Cosmology with Minkowski Functionals and Moments of Weak Lensing Fields

Andrea Petri, Columbia University

27th Texas Symposium of Relativistic Astrophysics

arXiv 1309.4460, PRD accepted

with Z.Haiman, L.Hui, M.May and J.M.Kratochvil
1 Introduction

2 Beyond gaussianity

3 Results

4 Conclusions
Cosmology with Minkowski Functionals and Moments of Weak Lensing Fields

Andrea Petri, Columbia University

Introduction
Beyond gaussianity
Results
Conclusions

Cosmological information in non weak lensing maps

- CMB temperature \rightarrow gaussian \rightarrow two point function
 \[\xi(x_1, x_2) = \langle \delta T(x_1) \delta T(x_2) \rangle \]
- Fourier equivalent: Power spectrum
 \[\langle \delta \hat{T}(k) \delta \hat{T}(k') \rangle = (2\pi)^3 P(k) \delta(k + k') \]
Cosmology with Minkowski Functionals and Moments of Weak Lensing Fields

Andrea Petri, Columbia University

Introduction

Beyond gaussianity

Results

Conclusions

Cosmological information in non weak lensing maps

- CMB temperature \rightarrow gaussian \rightarrow two point function
 $$\xi(x_1, x_2) = \langle \delta T(x_1) \delta T(x_2) \rangle$$

- Fourier equivalent: Power spectrum
 $$\langle \hat{\delta T}(k) \hat{\delta T}(k') \rangle = (2\pi)^3 P(k) \delta(k + k')$$
Cosmological information in non weak lensing maps

- CMB temperature \rightarrow gaussian \rightarrow two point function
 \[\xi(x_1, x_2) = \langle \delta T(x_1) \delta T(x_2) \rangle \]
- Fourier equivalent: Power spectrum
 \[\langle \hat{\delta} T(k) \hat{\delta} T(k') \rangle = (2\pi)^3 P(k) \delta(k + k') \]
Cosmology with Minkowski Functionals and Moments of Weak Lensing Fields

Andrea Petri, Columbia University

Introduction

Beyond gaussianity

Results

Conclusions

Cosmological information in non weak lensing maps

\[\frac{d\theta_i'}{d\theta_j} = (1 - \kappa)\delta_{ij} - \gamma_1 \sigma^3_{ij} - \gamma_2 \sigma^1_{ij} \]

• Convergence \(\kappa \) (galaxy magnification due to lensing) \(\rightarrow \) highly non gaussian \(\rightarrow \) two point statistics \(\xi(x_1, x_2) = \langle \kappa(x_1)\kappa(x_2) \rangle + \cdots \)
Cosmological information in non weak lensing maps

- \(\frac{d\theta'_i}{d\theta_j} = (1 - \kappa)\delta_{ij} - \gamma_1 \sigma_{ij}^3 - \gamma_2 \sigma_{ij}^1 \)

- Convergence \(\kappa \) (galaxy magnification due to lensing) \(\rightarrow \) highly non gaussian \(\rightarrow \) two point statistics \(\xi(x_1, x_2) = \langle \kappa(x_1)\kappa(x_2) \rangle + ?? \)
Our framework

1000 realizations of simulated κ maps for a fiducial ΛCDM model with $(\Omega_m, w, \sigma_8) = (0.26, -1.0, 0.798)$

- 1000 realizations for each parameter variation
- Single redshift plane at $z_s = 2$
- Galaxy shape noise added assuming $n_{gal} = 15\text{arcmin}^{-2}$
- Gaussian smoothing with a variable window size $\theta_G = 1 \div 15 \text{arcmin}$
Our framework

- 1000 realizations of simulated κ maps for a fiducial ΛCDM model with $(\Omega_m, w, \sigma_8) = (0.26, -1.0, 0.798)$
- 1000 realizations for each parameter variation
 - Single redshift plane at $z_s = 2$
 - Galaxy shape noise added assuming $n_{gal} = 15 \text{arcmin}^{-2}$
 - Gaussian smoothing with a variable window size $\theta_G = 1 \div 15 \text{arcmin}$
Our framework

- 1000 realizations of simulated κ maps for a fiducial ΛCDM model with $(\Omega_m, w, \sigma_8) = (0.26, -1.0, 0.798)$
- 1000 realizations for each parameter variation
- Single redshift plane at $z_s = 2$
 - Galaxy shape noise added assuming $n_{gal} = 15 \text{arcmin}^{-2}$
 - Gaussian smoothing with a variable window size $\theta_G = 1 \div 15 \text{arcmin}$
Our framework

- 1000 realizations of simulated κ maps for a fiducial ΛCDM model with $(\Omega_m, w, \sigma_8) = (0.26, -1.0, 0.798)$
- 1000 realizations for each parameter variation
- Single redshift plane at $z_s = 2$
- Galaxy shape noise added assuming $n_{gal} = 15\text{arcmin}^{-2}$
- Gaussian smoothing with a variable window size $\theta_G = 1 \div 15\text{arcmin}$
Our framework

- 1000 realizations of simulated κ maps for a fiducial ΛCDM model with $(\Omega_m, w, \sigma_8) = (0.26, -1.0, 0.798)$
- 1000 realizations for each parameter variation
- Single redshift plane at $z_s = 2$
- Galaxy shape noise added assuming $n_{gal} = 15\text{arcmin}^{-2}$
- Gaussian smoothing with a variable window size $\theta_G = 1 \div 15 \text{arcmin}$
Introduction

Beyond gaussianity

Results

Conclusions
Topological descriptors: beyond gaussian statistics

Consider the excursion sets $\Sigma(\nu) = \{ \kappa > \nu \sigma_0 \}$
Consider the excursion sets $\Sigma(\nu) = \{\kappa > \nu \sigma_0\}$
Introduction
Beyond gaussianity
Results
Conclusions

Figure: Full simulated convergence map
Figure: Excursion set with threshold $\nu = \kappa_T / \sigma_0 = 0.01 / \sigma_0$
Minkowski Functionals are...

- $V_0(\nu)$: area of the black regions
- $V_1(\nu)$: length of the boundaries of the black regions
- $V_2(\nu)$: genus of the black regions (number of connected regions - number of holes in them)
Minkowski Functionals are...

- $V_0(\nu)$: area of the black regions
- $V_1(\nu)$: length of the boundaries of the black regions
- $V_2(\nu)$: genus of the black regions (number of connected regions - number of holes in them)
Minkowski Functionals are...

- $V_0(\nu)$: area of the black regions
- $V_1(\nu)$: length of the boundaries of the black regions
- $V_2(\nu)$: genus of the black regions (number of connected regions - number of holes in them)
Minkowski Functionals are...

- $V_0(\nu)$: area of the black regions
- $V_1(\nu)$: length of the boundaries of the black regions
- $V_2(\nu)$: genus of the black regions (number of connected regions - number of holes in them)
Analytical study of Minkowski Functionals

- If the underlying random field is gaussian they are completely determined by $\sigma_0^2 = \langle \kappa^2 \rangle$ and $\sigma_1^2 = \langle |\nabla \kappa|^2 \rangle$
Analytical study of Minkowski Functionals

• If the underlying random field is gaussian they are completely determined by $\sigma_0^2 = \langle \kappa^2 \rangle$ and $\sigma_1^2 = \langle |\nabla \kappa|^2 \rangle$
Cosmology with Minkowski Functionals and Moments of Weak Lensing Fields

Andrea Petri, Columbia University

Introduction

Beyond gaussianity

Results

Conclusions

\[V_1(\nu) = \frac{1}{8\sqrt{2}} \frac{\sigma_1}{\sigma_0} \exp \left(-\frac{\nu^2}{2} \right) \]
The real κ field is non gaussian...

- MFs \leftrightarrow moments $\langle \kappa^n | \nabla \kappa |^{2m} \rangle$ via series expansion
- N-th order term is proportional $\sigma_0^N H_k(N) \langle \nu \rangle e^{-\nu^2/2}$
- The proportionality coefficient is a real space moment of order $2 + N$
- We call \textit{one point moments} the ones with $m = 0$, and \textit{moments with gradients} the ones with $m \neq 0$

Does the series converge?
The real κ field is non gaussian...

- MFs \leftrightarrow moments $\langle \kappa^n | \nabla \kappa |^{2m} \rangle$ via series expansion
 - N-th order term is proportional $\sigma_0^N H_k(N)(\nu) e^{-\nu^2/2}$
 - The proportionality coefficient is a real space moment of order $2 + N$
 - We call one point moments the ones with $m = 0$, and moments with gradients the ones with $m \neq 0$

Does the series converge?
Analytical study of Minkowski Functionals

The real κ field is non gaussian...

- MFs \leftrightarrow moments $\langle \kappa^n | \nabla \kappa |^{2m} \rangle$ via series expansion
- N-th order term is proportional $\sigma_0^N H_k(N)(\nu)e^{-\nu^2/2}$
- The proportionality coefficient is a real space moment of order $2 + N$
- We call one point moments the ones with $m = 0$, and moments with gradients the ones with $m \neq 0$

Does the series converge?
Analytical study of Minkowski Functionals

The real κ field is non gaussian...

- MFs \leftrightarrow moments $\langle \kappa^n | \nabla \kappa |^{2m} \rangle$ via series expansion
- N-th order term is proportional $\sigma_0^N H_k(N)(\nu)e^{-\nu^2/2}$
- The proportionality coefficient is a real space moment of order $2 + N$
- We call one point moments the ones with $m = 0$, and moments with gradients the ones with $m \neq 0$

Does the series converge?
Analytical study of Minkowski Functionals

The real \(\kappa \) field is non gaussian...

- MFs \(\leftrightarrow \) moments \(\langle \kappa^n | \nabla \kappa |^{2m} \rangle \) via series expansion
- \(N \)-th order term is proportional \(\sigma_0^N H_k(N)(\nu) e^{-\nu^2/2} \)
- The proportionality coefficient is a real space moment of order \(2 + N \)
- We call \textit{one point moments} the ones with \(m = 0 \), and \textit{moments with gradients} the ones with \(m \neq 0 \)

Does the series converge?
Analytical study of Minkowski Functionals

The real κ field is non gaussian...

- MFs \leftrightarrow moments $\langle \kappa^n | \nabla \kappa |^{2m} \rangle$ via series expansion
- N-th order term is proportional $\sigma_0^N H_k(N)(\nu) e^{-\nu^2/2}$
- The proportionality coefficient is a real space moment of order $2 + N$
- We call one point moments the ones with $m = 0$, and moments with gradients the ones with $m \neq 0$

Does the series converge?
1 Introduction

2 Beyond gaussianity

3 Results

4 Conclusions
Series convergence

Measured

Gaussian: $O(1)$

$O(\sigma_0)$

$O(\sigma_0^2)$
\[\Delta \chi^2 = (V_{\text{pert}} - V_{\text{meas}})_i (C_V^{-1})_{ij} (V_{\text{pert}} - V_{\text{meas}})_j \]

- \[\Delta \chi^2(\theta_G = 1') \approx 2000 \rightarrow \text{doesn't converge!} \]
- \[\Delta \chi^2(\theta_G = 15') \approx 0.1 \rightarrow \text{converges!} \]
\[\Delta \chi^2 = (V_{pert} - V_{meas})i (C_V^{-1})_{ij} (V_{pert} - V_{meas})_j \]

- \(\Delta \chi^2(\theta_G = 1') \approx 2000 \rightarrow \text{doesn't converge!} \)
- \(\Delta \chi^2(\theta_G = 15') \approx 0.1 \rightarrow \text{converges!} \)
\[\Delta \chi^2 = (V_{pert} - V_{meas})_i (C_V^{-1})_{ij} (V_{pert} - V_{meas})_j \]

- \(\Delta \chi^2(\theta_G = 1') \approx 2000 \rightarrow \text{doesn't converge!} \)
- \(\Delta \chi^2(\theta_G = 15') \approx 0.1 \rightarrow \text{converges!} \)
Downside: distinguishing power

- $\Delta \chi^2_{cosmo}(\theta_G = 1') \approx 5 \rightarrow \text{can distinguish!}$
- $\Delta \chi^2_{cosmo}(\theta_G = 15') \approx 0.5 \rightarrow \text{cannot distinguish!}$
Downside: distinguishing power

- $\Delta \chi^2_{cosmo}(\theta_G = 1') \approx 5 \rightarrow \text{can distinguish!}$
- $\Delta \chi^2_{cosmo}(\theta_G = 15') \approx 0.5 \rightarrow \text{cannot distinguish!}$
Fisher Constraints on Cosmology

- Power spectrum observable probes:

\[C = (C_1, C_2, ...) \]

\[C \] is a \(l_{\text{max}} \) sized vector.

- We use instead:

\[D = \left(V_0^{\nu_1}, V_0^{\nu_2}, ..., V_1^{\nu_1}, V_1^{\nu_2}, ..., V_2^{\nu_1}, V_2^{\nu_2}, ..., \langle \kappa^2 \rangle, \langle \kappa^3 \rangle, \langle \kappa^4 \rangle \right) \]

\(D \) is a \(3N_{\text{bins}} + 9 \) sized vector.

- Measure the covariances \(C_{ij} = \langle D_i D_j \rangle \) and compute the parameters \((p_\alpha = (\Omega_m, w, \sigma_8)) \) Fisher matrix

\[F_{\alpha\beta} = \frac{\partial D_i}{\partial p_\alpha} C^{-1}_{ij} \frac{\partial D_j}{\partial p_\beta} \]

- Marginalized errors on the parameters

\[\Delta p_\alpha = \sqrt{(F^{-1})_{\alpha\alpha}} \]
Fisher Constraints on Cosmology

• Power spectrum observable probes:

\[C = (C_1, C_2, ...) \]

\[C_{ij} = \langle D_i D_j \rangle \]

\[F_{\alpha\beta} = \frac{\partial D_i}{\partial p_\alpha} C_{ij}^{-1} \frac{\partial D_j}{\partial p_\beta} \]

\[\Delta p_\alpha = \sqrt{(F^{-1})_{\alpha\alpha}} \]
Fisher Constraints on Cosmology

- Power spectrum observable probes:

 \[\mathbf{C} = \left(C_1, C_2, \ldots \right) \]

- We use instead:

 \[\mathbf{D} = \left(V_0^{\nu_1}, V_0^{\nu_2}, \ldots, V_1^{\nu_1}, V_1^{\nu_2}, \ldots, V_2^{\nu_1}, V_2^{\nu_2}, \ldots, \langle \kappa^2 \rangle, \langle \kappa^3 \rangle, \langle \kappa^4 \rangle \right) \]

 \[\text{3N_{bins} + 9 sized vector} \]

- Measure the covariances \(C_{ij} = \langle D_i D_j \rangle \) and compute the parameters \(\left(p_\alpha = (\Omega_m, w, \sigma_8) \right) \) Fisher matrix

 \[F_{\alpha\beta} = \frac{\partial D_i}{\partial p_\alpha} C_{ij}^{-1} \frac{\partial D_j}{\partial p_\beta} \]

- Marginalized errors on the parameters

 \[\Delta p_\alpha = \sqrt{\left(F^{-1} \right)_{\alpha\alpha}} \]
Fisher Constraints on Cosmology

• Power spectrum observable probes:

\[C = (C_1, C_2, ...) \]

\[l_{\text{max}} \text{ sized vector} \]

• We use instead:

\[D = (V_0^{\nu_1}, V_0^{\nu_2}, ..., V_1^{\nu_1}, V_1^{\nu_2}, ..., V_2^{\nu_1}, V_2^{\nu_2}, ..., \langle \kappa^2 \rangle, \langle \kappa^3 \rangle, \langle \kappa^4 \rangle) \]

\[3N_{\text{bins}} + 9 \text{ sized vector} \]

• Measure the covariances \(C_{ij} = \langle D_i D_j \rangle \) and compute the parameters \((p_\alpha = (\Omega_m, w, \sigma_8)) \) Fisher matrix

\[F_{\alpha\beta} = \frac{\partial D_i}{\partial p_\alpha} C_{ij}^{-1} \frac{\partial D_j}{\partial p_\beta} \]

• Marginalized errors on the parameters

\[\Delta p_\alpha = \sqrt{(F^{-1})_{\alpha\alpha}} \]
Introduction

Beyond gaussianity

Results

Conclusions
Robustness checks

- We are trying to estimate a $\sim 3N_{\text{bins}} \times 3N_{\text{bins}} \sim 300 \times 300$ covariance matrix using 1000 realizations...
- Accuracy is not guaranteed
- Use of modified Fisher matrix formalism: use of auxiliary, independent, map set to measure $\partial D_i / \partial p_{\alpha}$ and C_{ij}
- Gets rid of statistical outliers
Robustness checks

- We are trying to estimate a $\sim 3N_{\text{bins}} \times 3N_{\text{bins}} \sim 300 \times 300$ covariance matrix using 1000 realizations...
- Accuracy is not guaranteed
- Use of modified Fisher matrix formalism: use of auxiliary, independent, map set to measure $\partial D_i/\partial p_\alpha$ and C_{ij}
- Gets rid of statistical outliers
Robustness checks

- We are trying to estimate a $\sim 3N_{bins} \times 3N_{bins} \sim 300 \times 300$ covariance matrix using 1000 realizations...

- Accuracy is not guaranteed
 - Use of modified Fisher matrix formalism: use of auxiliary, independent, map set to measure $\partial D_i / \partial p_\alpha$ and C_{ij}
 - Gets rid of statistical outliers
Robustness checks

- We are trying to estimate a $\sim 3N_{bins} \times 3N_{bins} \sim 300 \times 300$ covariance matrix using 1000 realizations...
- Accuracy is not guaranteed
- Use of modified Fisher matrix formalism: use of auxiliary, independent, map set to measure $\partial D_i / \partial p_\alpha$ and C_{ij}
- Gets rid of statistical outliers
Robustness checks

- We are trying to estimate a $\sim 3N_{\text{bins}} \times 3N_{\text{bins}} \sim 300 \times 300$ covariance matrix using 1000 realizations...
- Accuracy is not guaranteed
- Use of modified Fisher matrix formalism: use of auxiliary, independent, map set to measure $\partial D_i/\partial p_\alpha$ and C_{ij}
- Gets rid of statistical outliers
Constraints vs N_{bins} used

Ω_m, w, σ_8
Cosmology with Minkowski Functionals and Moments of Weak Lensing Fields

Andrea Petri, Columbia University

1 Introduction

2 Beyond gaussianity

3 Results

4 Conclusions
• MF perturbation series seems to converge for smoothing scales $\theta_G \sim 15'$ (but distinguishing power is lost)
• MF not equivalent to moments for smoothing scales of $\sim 1'$ (series doesn’t converge)
• For $\theta_G = 1'$ the MF give a factor of $1.5 \div 2$ better constraints than moments alone
• Most of the information that moments carry is stored in low order moments of gradients

Future prospects
• Study the accuracy of MFs covariance matrices
• Impact of systematic errors, currently under investigations
Cosmology with Minkowski Functionals and Moments of Weak Lensing Fields

Andrea Petri, Columbia University

Introduction

Beyond gaussianity

Results

Conclusions

- MF perturbation series seems to converge for smoothing scales $\theta_G \sim 15'$ (but distinguishing power is lost)
- MF not equivalent to moments for smoothing scales of $\sim 1'$ (series doesn’t converge)
- For $\theta_G = 1'$ the MF give a factor of $1.5 \div 2$ better constraints than moments alone
- Most of the information that moments carry is stored in low order moments of gradients

Future prospects

- Study the accuracy of MFs covariance matrices
- Impact of systematic errors, currently under investigations
• MF perturbation series seems to converge for smoothing scales $\theta_G \sim 15'$ (but distinguishing power is lost)
• MF not equivalent to moments for smoothing scales of $\sim 1'$ (series doesn’t converge)
 • For $\theta_G = 1'$ the MF give a factor of $1.5 \div 2$ better constraints than moments alone
 • Most of the information that moments carry is stored in low order moments of gradients

Future prospects
• Study the accuracy of MFs covariance matrices
• Impact of systematic errors, currently under investigations
• MF perturbation series seems to converge for smoothing scales $\theta_G \sim 15'$ (but distinguishing power is lost)

• MF not equivalent to moments for smoothing scales of $\sim 1'$ (series doesn’t converge)

• For $\theta_G = 1'$ the MF give a factor of $1.5 \div 2$ better constraints than moments alone

• Most of the information that moments carry is stored in low order moments of gradients

Future prospects

• Study the accuracy of MFs covariance matrices

• Impact of systematic errors, currently under investigations
• MF perturbation series seems to converge for smoothing scales \(\theta_G \sim 15' \) (but distinguishing power is lost)
• MF not equivalent to moments for smoothing scales of \(\sim 1' \) (series doesn’t converge)
• For \(\theta_G = 1' \) the MF give a factor of \(1.5 \div 2 \) better constraints than moments alone
• Most of the information that moments carry is stored in low order moments of gradients

Future prospects
• Study the accuracy of MFs covariance matrices
• Impact of systematic errors, currently under investigations
• MF perturbation series seems to converge for smoothing scales $\theta_G \sim 15'$ (but distinguishing power is lost)
• MF not equivalent to moments for smoothing scales of $\sim 1'$ (series doesn’t converge)
• For $\theta_G = 1'$ the MF give a factor of $1.5 \div 2$ better constraints than moments alone
• Most of the information that moments carry is stored in low order moments of gradients

Future prospects
• Study the accuracy of MFs covariance matrices
• Impact of systematic errors, currently under investigations
• MF perturbation series seems to converge for smoothing scales $\theta_G \sim 15'$ (but distinguishing power is lost)
• MF not equivalent to moments for smoothing scales of $\sim 1'$ (series doesn’t converge)
• For $\theta_G = 1'$ the MF give a factor of $1.5 \div 2$ better constraints than moments alone
• Most of the information that moments carry is stored in low order moments of gradients

Future prospects
• Study the accuracy of MFs covariance matrices
• Impact of systematic errors, currently under investigations
• MF perturbation series seems to converge for smoothing scales $\theta_{G} \sim 15'$ (but distinguishing power is lost)
• MF not equivalent to moments for smoothing scales of $\sim 1'$ (series doesn’t converge)
• For $\theta_{G} = 1'$ the MF give a factor of $1.5 \div 2$ better constraints than moments alone
• Most of the information that moments carry is stored in low order moments of gradients

Future prospects
• Study the accuracy of MFs covariance matrices
• Impact of systematic errors, currently under investigations
Thank you for your attention!