Galaxies frequently collide and merge
Circumbinary disk
Periodic accretion
EM variability & GWs for pulsar timing arrays

Gravitational waves (LISA)

Precursor burst

GW dissipation

Mass-loss - shocks

Recoil - shocks

Accretion afterglow

-10^6 yr

-10 yr

-1 day

+1 hr

+1 wk

+1 mo

+10 yr
What should we expect to see

- Doppler effect (talks on Monday)
 - velocity offset in AGN broad lines
 - time variable broad lines
- Periodic accretion
- Gap/minidisks, gas pile up
 - missing blue/UV component
 - optical/infrared bump
 - features in X-ray iron lines
- Gravitational waves (pulsar timing, LISA)
 - Gas affects binary migration → GW spectrum
 - eccentricity → GW spectrum
Why is this an open problem?

- Gas + radiation
- Disk-satellite interaction
- Vast timescales
- Vast spatial scales (3D)
- Boundary conditions
- Initial conditions?
- Viscosity – MHD turbulence
- General Relativity
- Heating-cooling
- Plasma physics: electrons + ions
• What does the steady-state configuration look like?
 – assume unequal mass binary
 – initial condition for simulations
• How fast does the binary merge?
Good old models (steady state)

Shakura-Sunyaev 1973

Goldreich-Tremaine 1980

Gas + radiation
Viscosity - turbulence
Heating-cooling
Disk-satellite interaction

Good old models (steady state)
Steady state model without satellite

- Angular momentum flux = viscous torque

\[\dot{M} \partial_r (r^2 \Omega) = \partial_r T_v \]

\[T_v = -2\pi r^3 (\partial_r \Omega) \nu \Sigma \]

- Viscous heating = radiative cooling

\[D_v = \frac{(\partial_r \Omega)T_v}{4\pi r} = \frac{9}{8} \Omega^2 \nu \Sigma \]

\[F = \sigma T_s^4 = \frac{4 \sigma T_c^4}{3} \frac{\tau}{\tau} \]

optical depth \[\tau = \kappa \Sigma/2 \]

Three unknowns: \(\Sigma(r), T_c(r), \nu(r) \)

- Viscosity: a prescription (Shakura-Sunyaev 1973)

\[\nu = \alpha c_s H \beta^b \]

\[\beta = p_{\text{gas}}/p \]

- Scaleheight \(\leftrightarrow \) vertical gravity = gas + rad. pressure

\[H = \frac{c_s}{\Omega} \]

\[c_s = \sqrt{p/\rho} \]

\[p_{\text{gas}} = \rho k T_c/(\mu m_p) \]

\[p_{\text{rad}} = \frac{1}{3} a T_c^4 \]
Steady state model with satellite

- Angular momentum flux \(= \) viscous + tidal torque
 \[
 \dot{M} \partial_r (r^2 \Omega) = \partial_r T_v - \partial_r T_d
 \]
 \[
 T_v = -2\pi r^3 (\partial_r \Omega) v \Sigma
 \]
 \[
 \partial_r T_d = 2\pi r \Lambda \Sigma
 \]

- Viscous heating = radiative cooling
 \[
 D_v + D_d = \frac{9}{8} \Omega^2 v \Sigma + \frac{1}{2} (\Omega_s - \Omega) \Lambda \Sigma
 \]
 \[
 F = \sigma T_s^4 = \frac{4}{3} \frac{\sigma T_c^4}{\tau}
 \]

Three unknowns: \(\Sigma(r), T_c(r), v(r) \)

Specific tidal torque density

specific tidal torque density:

\[
\Lambda \approx \begin{cases}
-\frac{1}{2} f q^2 r^2 \Omega^2 r^4 / \Delta^4 & \text{if } r < r_s - r_H, \\
+\frac{1}{2} f q^2 r^2 \Omega^2 r_s^4 / \Delta^4 & \text{if } r > r_s + r_H,
\end{cases}
\]

\[
\Delta \equiv \max(|r - r_s|, H) \quad r_H \equiv (q/3)^{1/3} r_s
\]
Steady-state circumbinary disk
Disk scaleheight vs radius

\[H \text{ [M\text{\textperiodcentered}] } \]

\[q = 0.1, 10^{-2}, 10^{-3}, 10^{-4} \]

\[r_s = 100M_\bullet \]

\[r \text{ [M\text{\textperiodcentered}] } \]

\[10, 10^2, 10^3, 10^4 \]
Viscous and tidal heating vs. radius
disk spectrum

optical brightening!
Local brightening of disk due to secondary

Orbital period [days]

Mass ratio

Orbital radius [r_g]

$10^7 M_\odot$
Phase diagram

orbital period [days]

mass ratio

orbital radius [r_g]
Residence time

\[q = 0.001 \]

- Type-1.5
- GW driven

\[q = 0.01 \]

- Type-2

Mass:
- \(10^5 M_\odot \)
- \(10^7 M_\odot \)
- \(10^9 M_\odot \)

Time:\n- \(t_{res} \) [yr]

\(P \) [day]
Requirements for an (optical) survey for finding periodic variable sources

Require:
- ≥ 100 sources $@ t_{\text{var}} \leq 1 \text{ yr}$
- ≥ 5 sources $@ t_{\text{var}} \leq 20 \text{ wk}$

Assume:
- $f_{\text{Edd}} = 0.3$
- $f_{\text{var}} = 0.1$
- $t_Q = 10^7 \text{ yr}$
- Hopkins et al. QSOLF $@ z=2$

Conclude:
- wide survey best to probe GW-decay
- disk physics at $i \sim 26.5$

Haiman, Kocsis, Menou (2009)
X-ray iron line features

Changing gap width

McKernan, Ford, Kocsis & Haiman (2013)
X-ray iron line features

Pile-up outside the gap

McKernan, Ford, Kocsis & Haiman (2013)
Gravitational Waves – Pulsar Timing Arrays

Gas OFF

Gas ON (Type-II)

Contribution of individual sources
Unresolved background
Total signal

Spectrum averaged over 1000 Monte Carlo realizations

Kocsis & Sesana (2011)
Conclusions

- Steady state circumbinary disk model
 - Gas pile up, overflow into gap
 - merger in gas (no gap decoupling $M < 10^7 \text{ M}_{\odot}$)
 - migration slower than previously thought

- Observational signatures
 - missing UV component
 - red/IR excess
 - periodic variability ($P \sim$ weeks to years)
 - peculiar iron line
 - pulsar timing array GW background
Simulations

SMBH binaries approaching merger

- **HD**: MacFadyen & Milosavljevic (2008); Hayasaki (2007); Cuadra et al. (2009); Roedig et al. (2012); D’Orazio, Haiman, MacFadyen (2012)
 - Central cavity, periodic accretion
- **HD+inspiral**: Baruteau, Ramirez-Ruiz, Masset (2012)
 - No central cavity
- **GR+D**: van Meter et al. (2010)
 - Launch outflow with high Γ
- **GR+EM**: Palenzuela et al. (2009, 10), Mösta et al. (2010)
 - Periodic variability in Pointing flux, dual jets
- **MHD**: Shi et al. (2011)
- **PN+MHD**: Noble et al. (2012)
- **GR+HD**: Bogdanovic et al. (2011), Bode et al. (2012)
- **GR+MHD**: Farris, Liu, & Shapiro (2011), Giacomazzo et al. (2012)
- **GR+MHD+“artificial gas cooling”**: Farris et al. (2012, 2013)

Still to do:
- Radiation pressure and plasma physics
- Initial and boundary conditions
- Run for many viscous times
Circumbinary accretion rates

\[dM/dt \times 10^{-4} (GM_0)^{1/2} / \Sigma_0 \]

\[t \times 2\pi (GM/a^3)^{-1/2} \]

\[\text{Power} \times 10^3 \]

\[\omega \times [1/2\pi (GM/a^3)^{1/2}] \]

\[0.01 \]

D’Orazio, Haiman, MacFadyen (2012)
Steady state model without satellite

- **Angular momentum flux** = viscous torque
 \[\dot{M} \partial_r (r^2 \Omega) = \partial_r T_v \]
 \[T_v = -2\pi r^3 (\partial_r \Omega) \nu \Sigma \]

- **Viscous heating** = radiative cooling
 \[D_v = \frac{(\partial_r \Omega) T_v}{4\pi r} = \frac{9}{8} \Omega^2 \nu \Sigma \]
 \[F = \sigma T_s^4 = \frac{4}{3} \frac{\sigma T_c^4}{\tau} \quad \text{optical depth} \quad \tau = \kappa \Sigma / 2 \]

Three unknowns: \(\Sigma(r), T_c(r), \nu(r) \)

- **Viscosity**: a prescription (Shakura-Sunyaev 1973)
 \[\nu = \alpha c_s H \beta^b \]
 \[\beta = \frac{p_{\text{gas}}}{p} \]

- **Scaleheight**: vertical gravity = gas + rad. pressure
 \[H = \frac{c_s}{\Omega} \]
 \[c_s = \sqrt{p/\rho} \]

\[p_{\text{gas}} = \rho k T_c / (\mu m_p) \]
\[p_{\text{rad}} = \frac{1}{3} a T_c^4 \]
Conclusions

- Self-consistent steady-state model of strongly perturbed accretion disks with a secondary
 - analytical solution
- Accumulation of gas ➔ gap overflow
- New type of migration: Type-1.5
 - Slower than Type-2
- Premerger glow
 - 10–500 x optical brightening,
 - Truncated spectrum at NUV frequencies
 - Periodic variability on orbital timescale ➔ statistical measurement of migration and GWs
- Mergers are embedded in gas
 - Electromagnetic signal coincident with merger
 - PTA signal is not suppressed
Evolution of binary+disk

- Binary excites spiral density waves in the disk
- Waves carry away angular momentum
 ➡️ migration (Goldreich & Tremaine 1980)

• **Type 1 (weakly perturbed disk)**
 - small secondary
 - linear theory for unperturbed disk

• **Type 2 (gap forms in the disk)**
 - large secondary
 - viscous gas inflow rate = migration rate
Indirect detection of GWs with AGN statistics

- Look for periodically variable AGN in large scale surveys (e.g. PanSTARRS, LSST)
- Measure number of binaries as a function of orbital period
 - Residence time at each radius depends on
 - GW inspiral
 - Disk driven migration
A labyrinth of disk effects

SMBH mass increase
- Eddington limited accretion of mass (so that radiation pressure doesn’t blow the gas away)
- changes M → time dependent
- phase shift ~ 0.01 rad / yr

Secondary mass increase
- Bondi-Hoyle accretion of mass
- changes m → time dependent
- supply limited
- quenched by radiation pressure, etc.
- phase shift ~ 1-10 rad/yr

Radial Wind
- Bondi-Hoyle accretion of momentum → radial force
- Changes Ω for a given radius
- phase shift extremely small

Azimuthal Wind
- headwind: gas orbital velocity is slower
- Bondi-Hoyle accretion of momentum → azimuthal force
- changes L'
- phase shift ~ 0.01 – 1 rad / yr

Axisymmetric Gravity
- Changes E, E', Ω,
 - decompose disk into concentric rings
 - each ring attracts the CO
 - phase shift very small

Migration
- CO generates a spiral density wave
- spiral wave torques the binary
- Changes L'
- Gap opens at large separations, then refills
 - phase shift may be very large: 1–1000 rad/yr
 - sensitive to accretion disk model
 - dominates over GWs for wide binaries

Kocsis et al., astroph/0701629
Local brightening of disk due to secondary

Orbital period [days]

Orbital radius [r_g]

Mass ratio

10^5 M_☉

$r_s [M_☉]$

10^7 M_☉

$r_s [M_☉]$
Circumbinary Cavity

1. **Annular gap opens for massive secondary**
2. **Secondary migrates inward on viscous timescale**
3. **When** $M_2 \sim M_{\text{disk}}$, **secondary stalls, inner disk drains, dam forms**
4. **Secondary pushed in by dam until** $a \sim 100 R_{\text{sch}}$

Bad news for emission: central disk “missing”?
Motivation

- Planet formation
 - How did hot Jupiters get to their observed proximity to the stars?
- Mergers of supermassive or intermediate mass BHs
 - Can gas solve the final parsec problem?
 - Controversial claims: ‘Yes’ Escala et al. (2005), ‘No’ Lodato et al. (2011)
 - Does this remove the GW background for pulsar timing array observations?
- Electromagnetic effects to catch sub-parsec supermassive binaries?
 - Premerger optical glow, truncated spectra
 - Periodic variability (PanSTARRS, LSST)
 - Iron line features (XMM Newton, Astro-H, IXO)