A hydrodynamical model for the Fermi-LAT γ-ray light curve of Blazar PKS 1510-089.

Yaxk’in Coronado.
Supervisor: Sergio Mendoza

Instituto de Astronomía UNAM
27th Texas Symposium on Relativistic Astrophysics

10th December 2013
Jets at all scales.

- Highly collimated and in most cases two-sided.
- Originate in compact objects.
- Show evidence of accretion of matter into the central source via an accretion disc.
- Highly relativistic Jets.

Fig 1. Morphological similarities between the accretion-ejection mechanism for three different astrophysical objects: \(\mu\)-quasars, quasars and long Gamma ray bursts.
Fig 2. When a fast velocity flow 2 moves over a slow velocity flow 1, a working surface (represented with a curved line) moving with velocity v_{ws} is generated as a result of the interaction.

The model

The formation of shocks waves in relativistic jets.

- Inhomogeneities in the surrounding media, deviations and precessions in the jets and time fluctuations in the ejection parameters.
- Time variations in the speed produce initial discontinuities since fast flow overtakes slow one.
- Ballistic approximation is assumed and so, radiation time scales are small with respect to the dynamical time.
Model

- The injected energy at the base of the jet is radiated away as the working surface moves:
 \[E_0 = \int_{\tau_1}^{\tau_2} \dot{m}(\tau) \gamma(v(\tau)) c^2 d\tau, \]
 \(\quad \) (1)

- Energy \(E_{ws} \) of the material inside the working surface:
 \[E_{ws} = mc^2 \gamma_{ws}, \]
 \(\quad \) (2)

- Assuming the energy loss along the jet \(E_r = E_0 - E_{ws} \) is completely radiated away, then the luminosity of the working surface is given by: \(L = \frac{dE_r}{dt} \).
Example: a constant discharge flow $\Rightarrow \dot{m} = \text{const.}$

- Injected velocity given by:
 \[v(\tau) = v_0 + \eta^2 \sin(\omega \tau) \quad (3) \]

- The model accurately fits observations of lGRB (Mendoza et al. 2009).

- The model only depend of four parameters:
 - Background velocity v_0
 - Fixed speed η^2
 - Frequency ω
 - Mass ejection rate \dot{m}
PKS 1510-089

Features

- Gamma-ray blazar detected in MeV-GeV band by EGRET.
- High polarized blazar.
- Redshift $z = 0.361$.
- Apparent velocities $\gtrsim 10c$ observed in multiepoch VLBA observations.
- Angle between line of sight and jet axis: $\sim 3^\circ$.

Fig 3. AGILE detection of a bright and persistent gamma-ray flare from the blazar PKS 1510-089
Fig 4. Fermi-LAT light curve of blazar PKS 1510-089 (from 0.2-300 GeV) obtained from 2008 August to 2012 May. The outburst identification number (ID) labelled in the figure stands for the different flares. The 3σ noise level is represented by the red horizontal line.
PKS1510-089

- Light curve fit by periodic variations in velocity (Cabrera, Coronado, et. al. 2013).
- ∀ peaks, background velocity: $v_0 = 0.9984c$, and so: $\Gamma(v_0) = 18$.

Fig 5. fit to the observational data in Gamma-rays of PKS 1510-089, by multiple periodic variations in velocity for each peak. Observational data from Fermi telescope.
Fig 6. Fit to observational data of 2011, by a periodic variation in velocity, note that the peak 30 is three times larger than the maximum outburst in 2009.

- Total luminosity in γ-rays is obtained by:
 \[L = F 4\pi D_L^2 \delta^{-(3+\alpha)} \]
 where the relativistic beaming $\delta \sim 18$.

- We take a luminosity distance of $D_L = 1919$ Mpc and select the index $\alpha \sim 3$ for all the bursts (Wu et. al. 2011).

- Fits are performed by normalising the Luminosity to the peak of the LC and the time to the FWHM of the LC. With this, \dot{m} and ω do not appear in the description of the LC in this normalised system.

- The parameter η^2 is then obtained by a χ^2 statistical test.
A0620-00

Fig 7. Fit to the observational data in X-rays of the \(\mu \)-quasar A0620-00, by periodic variations in velocity and mass discharge for the second peak. Observational data courtesy of McClintock private communication.

- Fit to the light curve of A0620-00, by periodic variations in velocity and mass discharge.
- The periodic variation in velocity for the mean peak assume a background velocity \(v_0 = 0.9 \) c.
- Periodic variations in the mass discharge are used to model the 2nd peak.
Conclusions

Relativistic shocks

- PKS1510-089 gamma-ray LC was fitted with the hydrodynamical model by Mendoza et al. (2009).
- $\dot{m} \sim (2 - 25) \times 10^{-3} M_\odot \text{yr}^{-1}$, $\omega^{-1} \sim (0.3 - 2.6) \times 10^3 \text{s}$ and $\Gamma \sim 10 - 380$. A clear scaling from lGRB (Mendoza et al. 2009) counterparts arise: $\dot{m} \sim 10^{-1} - 10^{-2} M_\odot \text{s}^{-1}$, $\omega^{-1} \sim 10\text{s}$ and $\Gamma \sim 50 - 500$.
- The model has also been tested for a μ-qsr (A0062-00).
- The fact that the same physical model can be applied to lGRB, Blazars and μ-qsr’s is a step forward to the unified physical model of relativistic astrophysical jets.