

Pathways in Physics

Top Careers in Physics and Astronomy

OCCUPATION	JOB SUMMARY	ENTRY-LEVEL EDUCATION	MEDIAN PAY 2021
Physics research & development	Explore the fundamental laws that govern space, time, energy, and matter.	Ph.D.	\$152,430
Astronomy research & development	Study planets, stars, and other celestial bodies.	Ph.D.	\$128,160
Federal government	Varies widely	MS or BS	\$125,220
High school teacher	leach science		\$61,820
Healthcare services	Example: Medical physics	BS or MS and certification	\$208,000+

https://www.bls.gov/ooh/life-physical-and-social-science/physicists-and-astronomers.htm#tab-2

Employment outlook

Occupation	Employment -	Projected Employment -	Change, 2021-31			
occupation	2021	2031	Percent	Numeric		
Astronomers and physicists	25,200	27,200	+8%	2,000		
Astronomers	2,200	2,400	+6%	100		
Physicists	23,000	24,800	+8%	1,900		

Largest employers in Astronomy

OCCUPATION	% OF TOTAL
Research and development in the physical, engineering, and life	41%
sciences	
Colleges, universities, and professional schools; state, local, and private	24
Federal government, excluding postal service	22

Largest employers in Physics

OCCUPATION	% OF TOTAL
Scientific research and development services	44%
Federal government, excluding postal service	15
Colleges, universities, and professional schools; state, local, and private	12
Ambulatory healthcare services	2

Example jobs for physicists

- **Atomic, molecular, and optical physicists** study atoms, simple molecules, electrons, and light.
- **Computational physicists** study the use of algorithms, numerical analysis, and datasets to explore the interaction between theoretical and experimental physics.
- **Condensed matter and materials physicists** study the physical properties of matter in molecules, nanostructures, or novel compounds.
- *Health physicists* study the effects of radiation on people, communities, and the environment.
- *Medical physicists* work in healthcare and use their knowledge of physics to develop new medical technologies.

Example jobs for physicists

- **Particle and nuclear physicists** study the properties of atomic and subatomic particles, such as quarks, electrons, and nuclei and the forces that cause their interactions.
- **Plasma physicists** study plasmas, a distinct state of matter that occur naturally in stars and interplanetary space and artificially in products such as neon signs and fluorescent lights.
- **Quantum information physicists** study ways to use quantum objects, such as atoms and photons, to probe information processing, computing, and cryptography.

Example jobs for astronomers

- Cosmologists and extragalactic/galactic, planetary, and stellar astronomers study the creation, evolution, and possible futures of the universe and its galaxies, stars, planets, and solar systems.
- **Optical and radio astronomers** use optical, radio, and gravitational-wave telescopes to study the motions and evolution of stars, galaxies, and the larger scale structure of the universe.

Earning degrees in the field

- BS in physics
 - Typically, 4 years of study
- MS in physics
 - Typically, 2 years of study past the BS
- PhD in physics
 - Typically, 3 years of study past the MS

UTD offer Financial aid and other help Many times

- one can

be paid to

earn these

degrees

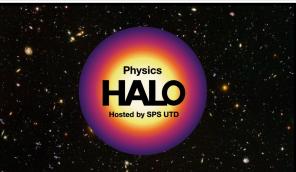
Undergraduates in Physics at UTD

- UT Dallas Physics department
 - Graduates ~30 BS students/year
 - #75th in size out of 680 total programs
 - Big enough to give students options
 - Small enough to give students personal attention
- Many of our UG students
 - Get involved in Society of Physics Students
 - Get involved in research

UTD chapter of Society of Physics Students

Leigh Preimesberger Academic Chair lan Schreiber Media Chair

Dr. Jason Slinker Faculty Advisor


Victoria Catleti es Students Outstanding this day September 7,2021.

National Service Award

US Student Representative to the SPS Executive Committee

2X Future Faces of Physics Award Blake Lily Award Winner

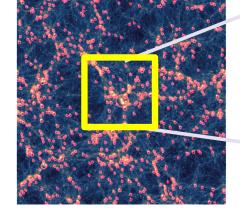
> **SPS Outstanding Chapter Award** <10% receive this 4th Consecutive Outstanding Award 9th Consecutive Chapter Distinction

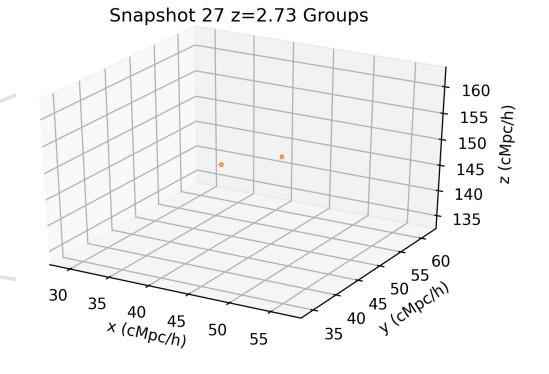
Physics HALO: Giving high school women scientific computing skills to be successful as a physicist.

The Blake Lilly Prize: influence general public about physics.

Undergraduate student involvement in

Astrophysics research




How do galaxies and clusters of galaxies grow in the Universe?

In a few billion years, our Milky Way will collide with Andromeda galaxy, forming a GIGANTIC galaxy!...

Cluster of galaxies on sky at present day (z=0)

Galaxies moving under gravity during past 10 billion years!

Brandon Sike (UTD), using huge computer simulations Illustris-TNG

Career Paths? Trayectoria Profesional?

Examples of Dr. Lindsay King's former astrophysics research students Ejemplos de antiguos estudiantes que hicieron investigación en astrofísica con la Dra. Lindsay King

Samantha Enriquez 5G Project Coordinator, Plano (High School Dallas)

Victoria Catlett Telescope computer software engineer Greenbank Observatory, W. Virginia (High School Allen)

Danny Eilbott PhD Student @UC Berkeley, California (High School Austin)

Evan Meade


Analyst (computer modeling) Goldman Sachs, Dallas (High School San Antonio)

Undergraduate student involvement in

Biophysics research

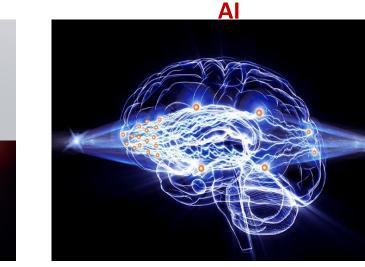
UG current/recent previous research

-Implementation of algorithms for protein NMR spectra calculations with polarizable potentials (A. Kumar)

-Prediction of compensatory mutations in proteins (K. Ravishankar, <u>https://doi.org/10.1016/j.bpj.2022.05.036</u>)

-Biomolecular simulations for protein investigation and cancer mutation characterization (B. Boysan <u>https://doi.org/10.1016/j.jmb.2021.167306</u>; M. Fang <u>https://doi.org/10.1016/j.dnarep.2018.07.010</u>)

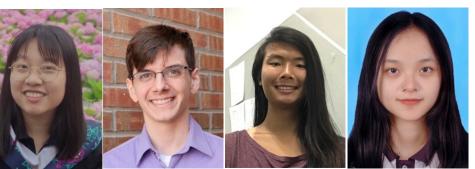
Undergraduate student involvement in


Quantum optics research

Quantum Networks

Optical Neural Networks for

Optical Microscopy



Quantum Optics Lab

PI: S. Du

Graduate Students

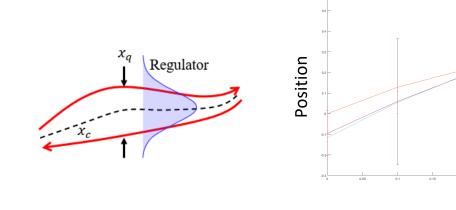
Undergraduate Students

(\$ NSF•DOE•AFOSR \$)

Undergraduate student involvement in

Quantum research (Toward Quantum Computing)

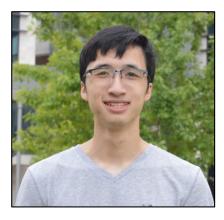
Krylov Time evolution Weighted Average M T Averaged MC

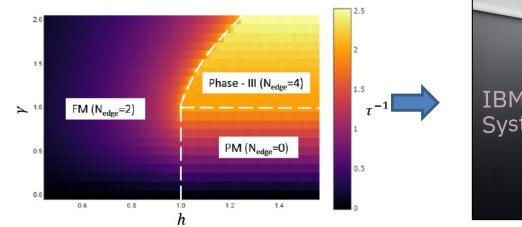

Krylov Time evolution Weighted Average MC Averaged MC

Kolodrubetz group

In past 4.5 years, our group had - 6 UTD undergraduates - 2 REU students We're always looking for good students

- Project #1: Simulating non-equilibrium quantum systems using a novel Monte Carlo path integral technique (2019-2020)
 - Patrick Koch, UTD senior. Current PhD student at UIUC
 - Write code to simulate system exactly for simple case
 - Develop codebase to compare to novel Monte Carlo method





Kolodrubetz group

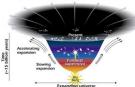
In past 4.5 years, our group had - 6 UTD undergraduates - 2 REU students We're always looking for good students

- Project #2: Uncovering stable edge states in quantum spin system and simulating on quantum computer (2022-present)
 - Khoa Nguyen, UTD senior
 - Developing modified model and simulate classically to obtain phase diagram
 - Plan to implement on cloud quantum computer (IBM)

Undergraduate student involvement in

Cosmology and General relativity research

Testing General Relativity and Modified Gravity at Cosmological Scales


Orion Ning, UT Dallas REU 2020, Advisor: Dr. Mustapha Ishak-Boushaki

Goal: Constrain Modified Gravity (MG) Parameters Using Current Cosmological Data

Why test deviations from GR?

 Cosmic Acceleration ("Dark Energy") – Cosmological Constant or modification to GR (MG)?

 $G_{\mu\nu} + \Lambda g_{\mu\nu} = 8\pi G T_{\mu\nu}$

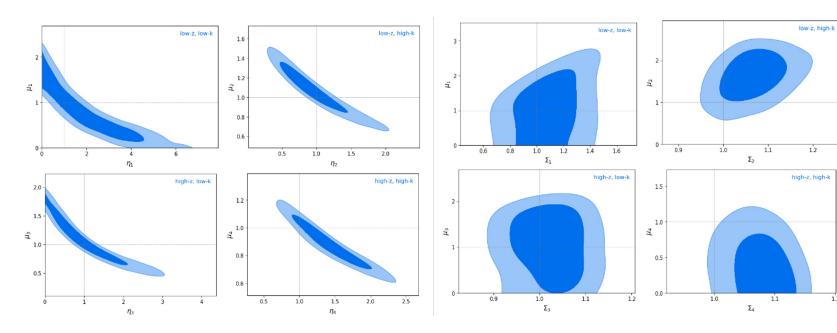
Background:

 GR and Einstein's Field Equations gives equations governing universe's expansion dynamics – perturbations give growth equations to allow us to probe large-scale structure formation as source of observations

To probe modifications to GR, we use Modified Gravity parameters, which enter through growth equations

 We use (μ, η) (aka (μ, X)) and (μ, Σ) parameterizations

$$(k^{2} - 3K)\Phi = -4\pi Ga^{2}\mu(a,k)\sum_{i} [\rho_{i}\Delta_{i} + 3(\frac{k^{2} - 3K}{k^{2}})\rho_{i}(1+w_{i})\sigma_{i}]$$
$$k^{2}(\Phi - \gamma(a,k)\Psi) = 12\pi Ga^{2}\mu(a,k)\sum_{i} \rho_{i}(1+w_{i})\sigma_{i}$$
$$k^{2}(\Phi + \Psi) = -4\pi Ga^{2}\Sigma(a,k)\sum_{i} [3\rho_{i}(1+w_{i})\sigma_{i} + \frac{2\rho_{i}\Delta_{i}}{1-3K/k^{2}}]$$


Method: Using ISiTGR (<u>https://doi.org/10.1103/PhysRevD.100.103530</u> (Phys. Rev. D 100, 103530 (2019)))

- Allows constraints on MG parameters, and other features
- Involves CAMB/CosmoMC, which calculates cosmological parameters and samples them (via MCMC)

DALLAS

Planck 2018 Results and Analysis on Parameter Constraints

Both functional form and binning forms implemented, binning results shown. Note, MG parameter = 1 implies GR

Conclusions: Overall, GR a valid theory that is mostly consistent with current cosmological probes. However, there are minor tensions with GR in binning results seen via constraints on MG parameters.

Main feature is Planck 2018 Cosmic Microwave Background (CMB) likelihoods; Complementary data sets include:

Dark Energy Survey (DES) Year 1 Clustering/Lensing Data Planck 2018 CMB Lensing Data Pantheon18 (Type Ia Supernovae) Baryon Acoustic Oscillations (BAO) Redshift Space Distortions (RSD)

Constraints for MG parameters using traditional binning in the (μ, η) parameterization							
μ_1	μ_2	μ_3	μ_4	η_1	η_2	η_3	η_4
$0.83^{+0.29}_{-0.74}$	$1.08^{+0.19}_{-0.17}$	$1.08^{+0.32}_{-0.41}$	$0.88^{+0.12}_{-0.14}$	< 2.76	$0.96^{+0.22}_{-0.42}$	< 1.35	$1.43^{+0.32}_{-0.41}$
Constraints for MG parameters using traditional binning in the (μ, Σ) parameterization							
μ_1	μ_2	μ_3	μ_4	Σ_1	Σ_2	Σ_3	Σ_4
$1.13_{-0.95}^{+0.48}$	$1.63^{+0.46}_{-0.35}$	$1.08^{+0.70}_{-0.51}$	< 0.553	$1.10^{+0.19}_{-0.19}$	$1.065^{+0.046}_{-0.052}$	$1.021^{+0.068}_{-0.055}$	$1.076^{+0.040}_{-0.031}$

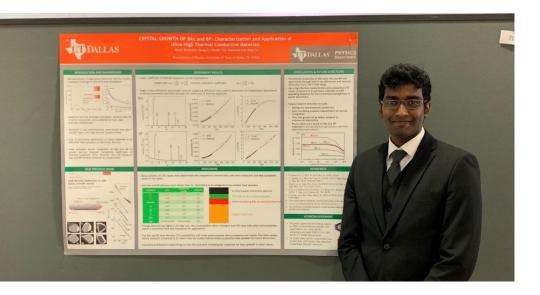
Acknowledgements and thanks to: Dr. Mustapha Ishak-Boushaki, Cristhian Garcia-Quintero, Ganymede Cluster computations, UT Dallas Physics NSF **REU Program and Funding**

See more of this work on: https://doi.org/10.1088/ 1475-7516/2020/12/018 (JCAP 2012:018, 2020)

12

Undergraduate student involvement in

Materials research



Undergraduate Students in Lv's Lab

- All seven undergraduate students received UTD Undergraduate Student Research Award.
- Two students (Varun Anand and Davis Zackaria) received Undergraduate Student Poster Contest Award.
- Two students (Chris Cailide and David Scherm) went to Air Force Research Lab (AFRL) for summer interns.

Varun Anand

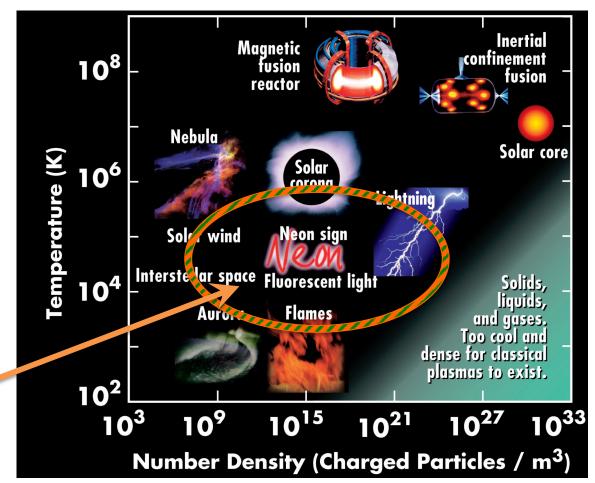
Davis Zackria

Undergraduate Students in Lv's lab

- Six undergraduate students have at least one publication with the group before graduation.
- One student was directly hired by Texas Instrument upon graduation. All the rest all went to graduate schools (received multiple offers from UC Davis, Ohio State, U. Colorado, Boston College, UIUC, UC San Diego, Arizona State, U Oklahoma etc).

Undergraduate student involvement in

Plasma Physics research


Plasma Physics

99% of the visible universe is plasma

- Stars
- Interstellar space
- Lightning
- Fire

Plasmas are WIDELY used in industry

- Arc welding/cutting
- Making computer 'chips'
- Coating windows

Undergraduate Students in Goeckner's lab

- 62 UG students have worked in his lab since 1999
 - 37 from UTD; 25 from other schools
 - 8 UG honors theses
 - 13 scientific publications in which UG students are authors.
- Some recent students have gone on to Princeton, Auburn and Georgia Tech
- 5 stayed at UT Dallas receiving PhDs with Dr Goeckner.

Example Pathways

Ashish Jindal WT White High School (DISD) ⇒ UT Dallas/Brookhaven Current Employment: Sandia National Labs Title: Principal Member of Technical Staff

<u>Caleb Nelson</u> Prosper High School ⇒ UT Dallas Current Employment: 3M Title: Senior Research Specialist

David Urrabazo Business Careers High School (San Antonio ISD - magnet) ⇒ UT Dallas Current Employment: Tower Semiconductor Italy (TX) Title: Test, device and yield engineer

Example Pathways

Gabriel Parron-Wells

Naaman Forest High School (Garland) ⇒ Richland College

 \Rightarrow UT Dallas

Current Employment: Samsung Electronics (Austin)

Title: Staff Engineer Process Integration

Keith Hernandez

Dallas Area High School

- \Rightarrow UPS / Odd Jobs
- \Rightarrow Collin Comm College (at 27)
- \Rightarrow UT Dallas

Current Employment: Applied Materials **Title**: Physicist/Scientist

Questions?