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Universidad Michoacana de San Nicolás de Hidalgo

Morelia, México
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Geometry of the the tangent bundle

Let (M, g) an n = d+ 1-dimension, smooth space-time.

TM := {(x, p) : x ∈ M,p ∈ TxM} : TangentBundle

π : TM → M : (x, p) 7→ x : projection map.
Lemma: TM is a 2n-dimension, smooth orientable manifold. We denote by:

T(x,p)(TM) : tangent space at (x, p) ∈ TM

T(x,p)(TM) splits canonicaly into a vertical V(x,p) and a horizontal H(x,p)

subspaces:

T(x,p)(TM) = H(x,p) ⊕ V(x,p), Z ∈ T(x,p)(TM) ⇔ Z = ZH + ZV .

Here after (xµ, pµ), µ ∈ {1, 2, ....n} local adopted coordinates on TM
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Geometry of the the tangent bundle

π
∗(x,p) : T(x,p)(TM) → TxM : push-forward

In adapted local coordinates (xµ, pµ) we have, for Z ∈ T(x,p)(TM),

Z = Xµ ∂

∂xµ
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V(x,p) := kerπ
∗(x,p) = {Z ∈ T(x,p)(TM) : π

∗(x,p)(Z) = 0}

The Connection map K(x,p) : T(x,p)(TM) → TxM : Z → K(x,p)(Z)

K(x,p)(Z) = K(x,p)(X
µ ∂

∂xµ
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] ∂
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H(x,p) := kerK(x,p) = {Z ∈ T(x,p)(TM) : K(x,p)(Z) = 0}.

H(x,p) is spanned by: eµ := ∂
∂xµ

∣
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(x,p)
− Γα

µβp
β ∂

∂pα
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, µ ∈ {1, 2, ....n}
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Geometry of the the tangent bundle

We now introduce the Sasaki metric ĝ on TM defined by

ĝ(X,Y ) := g(π∗(X), π∗(Y )) + g(K(X),K(Y )),

ĝ = gµνdx
µ ⊗ dxν + gµνθ

µ ⊗ θν , θµ = dpµ + Γµ
αβp

βdxα.

ĝ is a Semi-Riemmanian metric of signature
(−,−,+,+,+,+,+, .....,+) .

ĝ makes the spliting T(x,p)(TM) = H(x,p) ⊕ V(x,p) orthogonal.

ĝ defines a natural symplectic form Ωs on TM

Ωs(X,Y ) := ĝ(X, J(Y )).

J is an almost complex structure J : TM → TM defined by

J(ZH) := ZV , J(ZV ) := −ZH .
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A model for a Simple Rel. Gas

We now use these geometrical structures of the tangent bundle to
describe Relativistic kinetic theory of a collisionless simple gas
propagating on a connected and time-orientable (M, g) i.e.:

a collection of spinless, classical particles all of the same rest mass
m > 0

particles move along future directed timelike geodesics of the
background (M, g)

For the tangent bundle description of this gas we:

Introduce the Liouville vector field on TM :

L := (IH)−1(p) = pµeµ = pµ
∂

∂xµ
− Γµ

αβp
αpβ

∂

∂pµ
.

Introduce the Hamiltonian function on TM :

H(x, p) :=
1

2
ĝ(x,p)(L,L) =

1

2
gx(p, p) =

1

2
gµν(x)p

µpν .
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A model for a Simple Rel. Gas

Define the mass shell

Γm := H−1

(

−
m2

2

)

= {(x, p) ∈ TM : gx(p, p) = −m2}.

Γm is a (2n− 1)-dim. Lorentzian submanifold of TM .

For (M, g) connected and time-orientable, then Γm = Γ+
m ∪ Γ−

m i.e.
Γm is the disjoin union of the future Γ+

m and past mass shell Γ−

m

In the following we assume (M, g) to be time-oriented and work on the
future mass shell Γ+

m (gas particles move towards the future).
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A model for a Simple Rel. Gas

For the statistical description of the gas we introduce the distribution
function f : Γ+

m → R and the current density

J := fL/m.

Physical interpretation: Let Σ be a (2n− 2)-dimensional spacelike
hypersurface in Γm with normal vector field ν, then the flux integral

N [Σ] = −

∫

Σ

ĝ(J , ν)dΣ

is the averaged number of occupied trajectories that intersect Σ.
For a collisionless gas the distribution function f must satisfy:

£Lf = pµ
∂f

∂xµ
(x, p)− Γµ

αβ(x)p
αpβ

∂f

∂pµ
(x, p) = 0 Liouviles equation.
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Applications

As an application, we derive the most general collisionless distribution
function on a Kerr black hole background.
Strategy: Find a canonical transformation on TM that trivializes the
Liouville vector field: (xµ, pµ) 7→ (Qα, Pα) such that L = ∂

∂Q0

.
This can be achieved by using the Hamilton-Jacobi (HJ) method. Solve
the HJ equation

H(x,∇S) = −
1

2
m2 ⇔ gx(∇S,∇S) = −m2,

where S = S(x, P ) is the generating function:

pµ =
∂S

∂xµ
, Qα =

∂S

∂Pα

.

Leaves the symplectic form invariant: Ωs = dpµ ∧ dxµ = dPα ∧ dQα.

For the Kerr spacetime the HJ equation is separable (Carter, ’68).
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Applications

Complete solution has the form

S(t, ϕ, r, ϑ,m,E, ℓz, ℓ) = −Et+ ℓzϕ+

r
∫

√

R(r)
dr

∆(r)
+

ϑ
∫

√

Θ(ϑ)dϑ,

where
∆(r) = r2 − 2mHr + a2H ,

R(r) =
[

(r2 + a2H)E − aHℓz
]2

−∆(r)(m2r2 + ℓ2),

Θ(ϑ) = ℓ2 −
(

ℓz
sinϑ

− aH sinϑE
)2

−m2a2H cos2 ϑ

and

m: rest mass of particles

E = −pt: conserved energy

ℓz = pϕ: conserved angular momentum

ℓ2: Carter constant
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Applications

Explicitly, the new coordinates (Q,P ) are given by

P0 := m, P1 := E, P2 := ℓz, P3 := ℓ,

Q0 :=
∂S

∂m
= −m

r
∫

r2dr
√

R(r)
−ma2H

ϑ
∫

cos2 ϑdϑ
√

Θ(ϑ)
,

Q1 :=
∂S

∂E
= −t+

r
∫

(r2 + a2H)A(r)
√

R(r)

dr

∆(r)
+ aH

ϑ
∫

B(ϑ)
√

Θ(ϑ)
dϑ,

Q2 :=
∂S

∂ℓz
= ϕ− aH

r
∫

A(r)
√

R(r)

dr

∆(r)
−

ϑ
∫

B(ϑ)
√

Θ(ϑ)

dϑ

sin2 ϑ
,

Q3 :=
∂S

∂ℓ
= −ℓ

r
∫

dr
√

R(r)
+ ℓ

ϑ
∫

dϑ
√

Θ(ϑ)
,

with the functions A(r) := (r2 + a2H)E− aHℓz and B(ϑ) := ℓz − aH sin2 ϑE.
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Applications

By construction, H = −m2/2 = −P 2
0 /2 in terms of the new coordinates

(Q,P ). Therefore,

Q̇0 =
∂H

∂P0
= −m,

while all the other Q’s and all the P ’s are constant.
Consequently, the Liouville vector field in these new coordinates is simply

L = −m
∂

∂Q0
.

Therefore, the most general collisionless distribution function on Kerr is

f(x, p) = F (Q1, Q2, Q3, P0, P1, P2, P3).

f is stationary and axisymmetric if F is independent of Q1 and Q2.

Solution is only formal: Q’s are multi-valued in general!
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Conclusions

Previous method has been extended to:

Case of a charged collisionless gas on a Kerr-Newman balck hole

Case of a collisionless gas propagating on a FRW space times
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