Warped dynamical grids for accreting binary black holes

Miguel Zilhão Scott Noble

Center for Computational Relativity and Gravitation Rochester Institute of Technology

December 11 2013, XXVII Texas Symposium, Dallas, TX

Contents

1 Introduction

- Setup
- 3 Warped coordinate transformation
- 4 Final Remarks

Outline

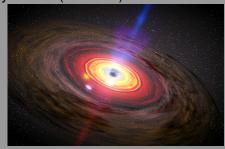
1 Introduction

- 2 Setup
- 3 Warped coordinate transformation
- 4 Final Remarks

Context

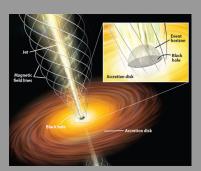
General Relativity + Magnetohydrodynamics (GRMHD):

- quasars
- gamma-ray bursts
- active galactic nuclei
- accretion disks



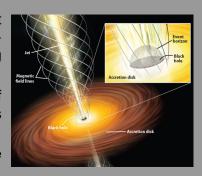
Binary Black Hole Accretion Disks

- Circumbinary accretion disks should form around massive binary black holes systems
- Understanding circumbinary accretion flows is essential for identification of binary black holes



Binary Black Hole Accretion Disks

- Gravitational Waves (GW) and light (EM) originate in different mechanisms, independently constraining models
- Either GW or EM observations of close supermassive BH binaries would be the first of its kind!
- Follow up observations can often be made via coordinated alert systems



Binary Black Hole Accretion Disks

- time-dependent gravity moves matter around
- gas is heated and becomes luminous
- light emitted reaches observer
- we can make predictions for this emitted light

Goals

- simulate EM waves coming from these objects
- focusing on inspiral, merger, and ringdown phase
- GW observations of these events in tandem with EM observations
- explore dynamics of high-energy plasma and strong field regime of gravity
- make predictions so that people now what to look for in the data

Outline

1 Introduction

- Setup
- 3 Warped coordinate transformation
- 4 Final Remarks

GRMHD

General Relativity + Magnetohydrodynamics (GRMHD):

$$egin{aligned} R_{\mu
u} - rac{R}{2}g_{\mu
u} &= 8\pi\left(T_{\mu
u}^{
m H} + T_{\mu
u}^{
m EM}
ight) \ T_{\mu
u}^{
m H} &=
ho h u_{\mu}u_{
u} + P g_{\mu
u} \ T_{\mu
u}^{
m EM} &= F_{\mu\lambda}F_{
u}^{\;\lambda} - rac{g_{\mu
u}}{4}F^2 \end{aligned}$$

where ρ , ϵ , P, u_{μ} and $h \equiv 1 + \epsilon + P/\rho$ are the fluid rest mass density, specific internal energy, gas pressure, 4-velocity, and specific enthalpy

Code

The Harm3d code

- Ideal-MHD on curved spacetimes (does not evolve Einstein's Equations)
- Spacetime described through a vacuum post-Newtonian (PN) approximation
- 8 coupled nonlinear 1st-order hyperbolic PDEs; 1 constraint eq.
- Finite Volume conservative scheme; Method of Lines with 2ndorder Runge-Kutta
- Mesh refinement via coordinate transformation: Eqs. solved on uniform "numerical" coordinates related to "physical" coordinates via nonlinear algebraic expressions
- Parallelization via uniform domain decomposition; 1 subdomain per process

"Diagonal" gridding scheme

MHD equations are solved in a uniformly discretized space of spatial coordinates $\{x^{(i)}\}$ isomorphic to spherical coordinates $\{r, \theta, \phi\}$:

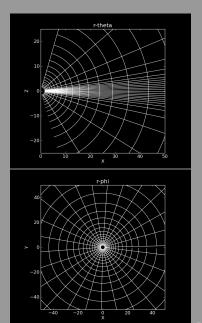
$$r(x^{(1)}) = Me^{x^{(1)}}$$

$$\theta(x^{(2)}) = \frac{\pi}{2} \left[1 + (1 - \xi) \left(2x^{(2)} - 1 \right) + \left(\xi - \frac{2\theta_c}{\pi} \right) \left(2x^{(2)} - 1 \right)^n \right]$$

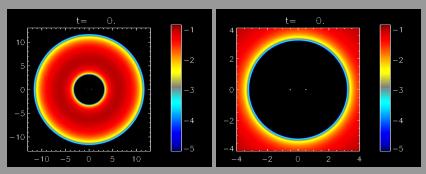
$$\phi(x^{(3)}) = x^{(3)}$$

"Diagonal" gridding scheme

- Radial cell extents are smaller at smaller radii in order to resolve smaller scale features of the accretion flow there.
- More cells are concentrated near the plane of the disk and the binary's orbit.



Example: circumbinary disk



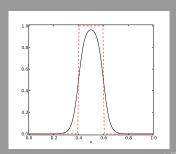
 log_{10} of density integrated in θ (surface density)

Outline

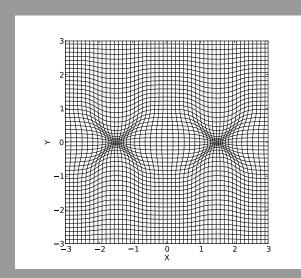
- 1 Introduction
- 2 Setup
- 3 Warped coordinate transformation
- 4 Final Remarks

Warped Cartesian coordinates

$$\frac{1}{X_{\text{max}} - X_{\text{min}}} \frac{\partial X}{\partial x} = 1 \quad -a_{x1} \tilde{\tau}(y, y_1, \delta_{y3}) \left[\tilde{\tau}(x, x_1, \delta_{x1}) - 2\delta_{x1} \right] \\
-a_{x2} \tilde{\tau}(y, y_2, \delta_{y4}) \left[\tilde{\tau}(x, x_2, \delta_{x2}) - 2\delta_{x2} \right] \\
\frac{1}{Y_{\text{max}} - Y_{\text{min}}} \frac{\partial Y}{\partial y} = 1 \quad -a_{y1} \tilde{\tau}(x, x_1, \delta_{x3}) \left[\tilde{\tau}(y, y_1, \delta_{y1}) - 2\delta_{y1} \right] \\
-a_{y2} \tilde{\tau}(x, x_1, \delta_{x4}) \left[\tilde{\tau}(y, y_2, \delta_{y2}) - 2\delta_{y2} \right]$$



Example



Warped Spherical Coordinates

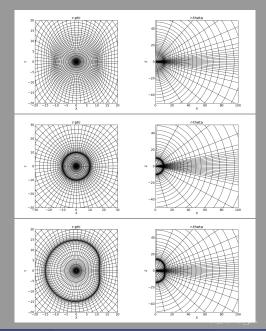
$$r(y) = R_{\text{in}} + (b_r - sa_r) y + a_r \left[\sinh \left(s(y - y_b) \right) + \sinh \left(sy_b \right) \right]$$

$$a_r \equiv \frac{R_{\text{out}} - R_{\text{in}} - b_r}{\sinh \left(s(1 - y_b) \right) + \sinh \left(sy_b \right) - s}$$

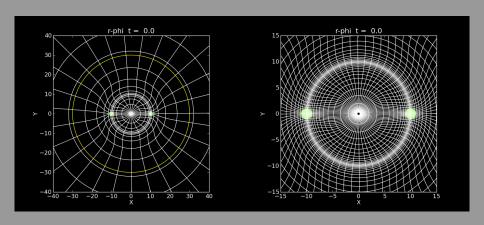
The meaning of the parameters is more readily gleaned when looking at $\partial r/\partial y$:

$$\frac{\partial r}{\partial y} = b_r + sa_r \left[\cosh \left(s(y - y_b) \right) - 1 \right]$$

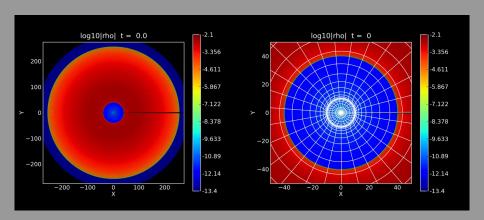
Examples



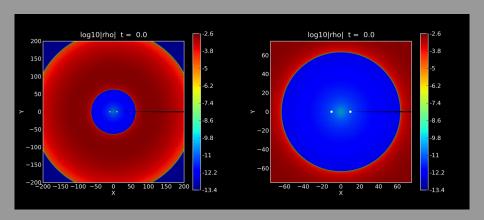
Binary Warped Gridding scheme



Disk with single black hole



Disk with black hole binary



Outline

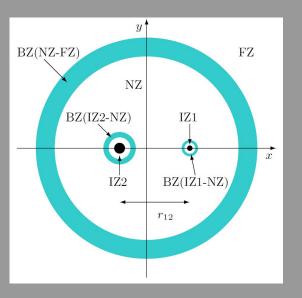
1 Introduction

- 2 Setup
- 3 Warped coordinate transformation
- 4 Final Remarks

Final Remarks

- We have tools to model single black hole accretion disks
- We have tools to make observational predictions from these simulations;
- We are in the process of applying these tools to the binary case:
 - Implemented dynamic warped gridding scheme in the Harm3d code
 - This construction is very general and in no way relies in MHD, or BH evolutions.
 - Successfully passes "Field Loop" and "Bondi" tests
- Goal: evolve circumbinary accretion disk around binary black hole

Metric



- Inner Zones (IZ): close to BHs:
- Near Zone (NZ): "intermediate" region;
- Far Zone (FZ): gravitational wave region;
- Buffer Zones (BZ): transition regions.