SELF-CONSISTENT ANALYTIC MODEL OF CIRCUMBINARY ACCRETION DISKS AND TYPE 1.5 MIGRATION

Bence Kocsis (IAS) XXVII. Relativistic Astrophysics Symposium, Texas, December 11, 2013

Galaxies frequently collide and merge

What should we expect to see

- Doppler effect (talks on Monday)
 - velocity offset in AGN broad lines
 - time variable broad lines
- Periodic accretion
- Gap/minidisks, gas pile up
 - missing blue/UV component
 - optical/infrared bump
 - features in X-ray iron lines
- Gravitational waves (pulsar timing, LISA)
 - Gas affects binary migration \rightarrow GW spectrum
 - eccentricity \rightarrow GW spectrum

Why is this an open problem?

Gas + radiation Disk-satellite interaction

Viscosity – MHD turbulence Vast timescales Vast spatial scales (3D) Boundary conditions

General Relativity

Initial conditions?

Heating-cooling

Plasma physics: electrons + ions

- What does the steady-state configuration look like?
 - assume unequal mass binary
 - initial condition for simulations
- How fast does the binary merge?

Good old models (steady state)

Shakura-Sunyaev 1973

Goldreich-Tremaine 1980

Steady state model without satellite

- Angular momentum flux = viscous torque $\dot{M}\partial_{r}(r^{2}\Omega) = \partial_{r}T_{\nu}$ $T_{\nu} = -2\pi r^{3}(\partial_{r}\Omega)\nu\Sigma$
- Viscous heating = radiative cooling

$$D_{\nu} = \frac{(\partial_{\rm r}\Omega)T_{\nu}}{4\pi r} = \frac{9}{8}\Omega^2 \nu \Sigma$$

$$= F = \sigma T_{\rm s}^4 = \frac{4}{3} \frac{\sigma T_{\rm c}^4}{\tau}$$

optical depth $\tau = \kappa \Sigma/2$

Three unknowns: $\Sigma(r)$, T_c(r), v(r)

Viscosity: a prescription (Shakura-Sunyaev 1973)

$$\nu = \alpha c_{\rm s} H \beta^b \qquad \beta = p_{\rm gas} / p$$

• Scaleheight - vertical gravity = gas + rad. pressure

$$H = \frac{c_{\rm s}}{\Omega} \qquad c_{\rm s} =$$

$$p_{\rm gas} = \rho k T_{\rm c} / (\mu m_{\rm p})$$
$$p_{\rm rad} = \frac{1}{3} a T_{\rm c}^4$$

Steady state model with satellite

• Angular momentum flux = viscous + tidal torque

$$\dot{M}\partial_{\rm r}(r^2\Omega) = \partial_{\rm r}T_{\nu} - \partial_{\rm r}T_{\rm d}$$

$$T_{\nu} = -2\pi r^{3}(\partial_{\rm r}\Omega) \nu \Sigma$$
$$\partial_{\rm r}T_{\rm d} = 2\pi r \Lambda \Sigma$$

Viscous heating = radiative cooling

$$D_{\nu} + D_{\rm d} = \frac{9}{8} \Omega^2 \nu \Sigma + \frac{1}{2} (\Omega_{\rm s} - \Omega) \Lambda \Sigma$$

$$F = \sigma T_{\rm s}^4 = \frac{4}{3} \frac{\sigma T_{\rm c}^4}{\tau}$$
optical depth $\tau = \kappa \Sigma/2$

Three unknowns: $\Sigma(r)$, $T_c(r)$, v(r)

Specific tidal torque density specific tidal torque density:

$$\Lambda \approx \begin{cases} -\frac{1}{2} f q^2 r^2 \Omega^2 r^4 / \Delta^4 & \text{if } r < r_{\text{s}} - r_{\text{H}}, \\ + \frac{1}{2} f q^2 r^2 \Omega^2 r_{\text{s}}^4 / \Delta^4 & \text{if } r > r_{\text{s}} + r_{\text{H}}, \end{cases}$$
$$\Delta \equiv \max(|r - r_{\text{s}}|, H) \qquad r_{\text{H}} \equiv (q/3)^{1/3} r_{\text{H}}$$

Steady-state circumbinary disk

Disk scaleheight vs radius

Viscous and tidal heating vs. radius

disk spectrum

optical brightening!

Local brightening of disk due to secondary

Phase diagram

orbital radius [r_g]

mass ratio

Residence time

Requirements for an (optical) survey for finding periodic variable

Require:

≥ 100 sources @ t_{var}≤ 1 yr ≥ 5 sources @ t_{var}≤ 20 wk

Assume:

Conclude:

- wide survey best to probe GW-decay
- disk physics at i~26.5

Haiman, Kocsis, Menou (2009)

X-ray iron line features

Changing gap width

McKernan, Ford, Kocsis & Haiman (2013)

X-ray iron line features

Pile-up outside the gap

McKernan, Ford, Kocsis & Haiman (2013)

•••

Χ2

Gravitational Waves – Pulsar Timing Arrays Gas OFF Gas ON (Type-II)

Conclusions

- Steady state circumbinary disk model
 - Gas pile up, overflow into gap
 - merger in gas (no gap decoupling M< 10⁷ Msun)
 - migration slower than previously thought
- Observational signatures
 - missing UV component
 - red/IR excess
 - periodic variability (P ~ weeks to years)
 - peculiar iron line
 - pulsar timing array GW background

Simulations

SMBH binaries approaching merger

- HD: MacFadyen & Milosavljevic (2008); Hayasaki (2007); Cuadra et al. (2009); Roedig et al. (2012); D'Orazio, Haiman, MacFadyen (2012)
 - Central cavity, periodic accretion
- HD+inspiral: Baruteau, Ramirez-Ruiz, Masset (2012)
 - No central cavity
- GR+D: van Meter et al. (2010)
 - Launch outflow with high Γ
- GR+EM: Palenzuela et al. (2009, 10), Mösta et al. (2010)
 - Periodic variability in Pointing flux, dual jets
- MHD: Shi et al. (2011)
- PN+MHD: Noble et al. (2012)
- GR+HD: Bogdanovic et al. (2011), Bode et al. (2012)
- GR+MHD: Farris, Liu, & Shapiro(2011), Giacomazzo et al. (2012)
- GR+MHD+"artificial gas cooling": Farris et al. (2012,2013)

Still to do:

- Radiation pressure and plasma physics
- Initial and boundary conditions
- Run for many viscous times

Circumbinary accretion rates

0.01

D'Orazio, the fairman/1904ac Fadyen (2012) 23

 $\alpha = 0.005$

Steady state model without satellite

- Angular momentum flux = viscous torque $\dot{M}\partial_{r}(r^{2}\Omega) = \partial_{r}T_{\nu}$ $T_{\nu} = -2\pi r^{3}(\partial_{r}\Omega)\nu\Sigma$
- Viscous heating = radiative cooling

$$D_{\nu} = \frac{(\partial_{\rm r}\Omega)T_{\nu}}{4\pi r} = \frac{9}{8}\Omega^2 \nu \Sigma$$

$$= F = \sigma T_{\rm s}^4 = \frac{4}{3} \frac{\sigma T_{\rm c}^4}{\tau}$$

optical depth $\tau = \kappa \Sigma/2$

Three unknowns: $\Sigma(r)$, T_c(r), v(r)

Viscosity: a prescription (Shakura-Sunyaev 1973)

$$\nu = \alpha c_{\rm s} H \beta^b \qquad \beta = p_{\rm gas} / p$$

• Scaleheight - vertical gravity = gas + rad. pressure

$$H = \frac{c_{\rm s}}{\Omega} \qquad c_{\rm s} =$$

$$p_{\rm gas} = \rho k T_{\rm c} / (\mu m_{\rm p})$$
$$p_{\rm rad} = \frac{1}{3} a T_{\rm c}^4$$

Conclusions

 Self-consistent steady-state model of strongly perturbed accretion disks with a secondary

- analytical solution
- accumulation of gas → gap overflow
- new type of migration: Type-1.5
 - slower than Type-2
- Premerger glow
 - 10–500 x optical brightening,
 - truncated spectrum at NUV frequencies
 - periodic variability on orbital timescale

ightarrow statistical measurement of migration and GWs

- mergers are embedded in gas
 - electromagnetic signal coincident with merger
 - PTA sigal is not suppressed

Evolution of binary+disk

- Binary excites spiral density waves in the disk
- Waves carry away angular momentum
 migration (Goldreich & Tremaine 1980)

Type 1 (weakly perturbed disk)

- small secondary
- linear theory for unperturbed disk

Type 2 (gap forms in the disk)

- large secondary
- viscous gas inflow rate = migration rate

Indirect detection of GWs with AGN statistics

- Look for periodically variable AGN in large scale surveys (e.g. PanSTARRS, LSST)
- Measure number of binaries as a function of orbital period
 - Residence time at each radius depends on
 - GW inspiral
 - Disk driven migration

A labyrinth of disk effects

SMBH mass increase

- Eddington limited accretion of mass (so that radiation pressure doesn't blow the gas away)
- changes $M \rightarrow$ time dependent
- phase shift ~ 0.01 rad / yr

Radial Wind

- Bondi-Hoyle accretion of momentum
 → radial force
- Changes Ω for a given radius
- phase shift extremely small

Axisymmetric Gravity

- Changes E, E', Ω ,
- decompose disk into concentric rings
- each ring attracts the CO
- phase shift very small

Kocsis et al., astroph/0701629

Secondary mass increase

- Bondi-Hoyle accretion of mass
- changes $m \rightarrow$ time dependent
- supply limited
- quenched by radiation pressure, etc.
- phase shift ~ 1-10 rad/yr

Azimuthal Wind

- headwind: gas orbital velocity is slower
- Bondi-Hoyle accretion of momentum
 → azimuthal force
- changes L'
- phase shift ~ 0.01 1 rad / yr

Migration

- CO generates a spiral density wave
- spiral wave torques the binary
- Changes L'
- Gap opens at large separations, then refills
- phase shift may be very large: 1–1000 rad/yr
- sensitive to accretion disk model
- · dominates over GWs for wide binaries

Local brightening of disk due to secondary

orbital radius [r_a]

orbital radius [r_a]

Circumbinary Cavity

- 1. Annular gap opens for massive secondary
- 2. Secondary migrates inward on viscous timescale
- 3. When $M_2 \sim M_{disk}$, secondary stalls, inner disk drains, dam forms
- 4. Secondary pushed in by dam until $a \sim 100 R_{sch}$.

Bad news for emission: central disk "missing"?

Motivation

- Planet formation
 - How did hot Jupiters get to their observed proximity to the stars?
- Mergers of supermassive or intermediate mass BHs
 - Can gas solve the final parsec problem?
 - Controversial claims: 'Yes' Escala et al. (2005), 'No' Lodato et al. (2011)
 - Does this remove the GW background for pulsar timing array observations?
 - Electromagnetic effects to catch sub-parsec supermassive binaries?
 - Premerger optical glow, truncated spectra
 - Periodic variability (PanSTARRS, LSST)
 - Iron line features (XMM Newton, Astro-H, IXO)