Neutron stars and nuclear symmetry energy

Hajime SOTANI (YITP, Kyoto U.)

HS, Nakazato, Iida, Oyamatsu, PRL (2012) HS, Nakazato, Iida, Oyamatsu, MNRASL (2013) HS, Nakazato, Iida, Oyamatsu, MNRAS (2013)

neutron stars

Structure of NS

- solid layer (crust)
- nonuniform structure (pasta)
- fluid core (uniform matter)
- Crust thickness ≤ 1km
 - Determination of EOS for high density region could be quite difficult on Earth
- Constraint on EOS via observations of neutron stars
 - stellar mass and radius
 - stellar oscillations (& emitted GWs)

"(GW) asteroseismology"

 NS can be considered as "Rosetta stone" to see physics in ultra-high density region.

<u>QPOs in SGRs</u>

- Quasi-periodic oscillations (QPOs) in afterglow of giant flares from soft-gamma repeaters (SGRs)
 - SGR 0526-66 (5th/3/1979) : 43 Hz
 - SGR 1900+14 (27th/8/1998) : 28, 54, 84, 155 Hz
 - SGR 1806-20 (27th/12/2004) : <u>18</u>, 26, 30, 92.5, 150, 626.5, 1837 Hz (Barat+ 1983, Israel+ 05, Strohmayer & Watts 05, Watts & Strohmayer 06)

- Crustal torsional oscillation ?
- Magnetic oscillations ?
- Asteroseismology → stellar properties (*M*, *R*, *B*, EOS ...)

torsional oscillations

- axial parity oscillations
 - incompressible
 - no density perturbations
- in Newtonian case

(Hansen & Cioff 1980)

$$_\ell t_0 \sim rac{\sqrt{\ell(\ell+1)\mu/
ho}}{2\pi R} \sim 16\sqrt{\ell(\ell+1)} \; {
m Hz} ~~_\ell t_n \sim rac{\sqrt{\mu/
ho}}{2\Delta r} \sim 500 imes n \; {
m Hz}$$

- μ: shear modulus
- frequencies \propto shear velocity $v_s = \sqrt{m}/\Gamma$
- overtones depend on crust thickness
- effect of magnetic field
 - frequencies become larger (Sotani+07, Gabler+13)

EOS for curst region

Oyamatsu & lida 03, 07)
 Bulk energy per nucleon near the saturation point of symmetric nuclear matter at zero temperature;

$$w = w_0 + \frac{K_0}{18n_0^2}(n - n_0)^2 + S_0$$

- Calculations of the optimal density distribution of stable nuclei within Thomas Fermi theory.
- phenomenological, but cover the experimental data for stable nuclei.
- $K_0 \& L$ are associated with stiffness EOS of nuclear matter

what we do

- EOS for core region is still uncertain. (cf. Steiner & Watts 09) ٠
- To prepare the crust region, we integrate from r=R. ۲
 - -M, R: parameters for stellar properties
 - -L, K_0 : parameters for curst EOS (Oyamatsu & lida 03, 07)
- In crust region, torsional oscillations are calculated. ٠
 - considering the shear only in spherical nuclei.
 - frequency of fundamental oscillation $\propto v_s (v_s^2 \sim \mu/H)$
- Comparing frequencies with QPOs, we will put a constraint on EOS ۲ parameter.

 \Rightarrow almost independent of the incompressibility K_0

robust constraint on L

effect of superfluidity

- $\rho \gtrsim 4 \times 10^{11}$ g/cm³; neutrons start to drip out of nuclei
 - some of them play as superfluid
 - how many fraction of dripped neutrons behave as superfluid ?
 - major parts may be locked to the motion of protons in nuclei (Chamel 12)
 - depending on density, $N_{\rm s}/N_{\rm d} \simeq 10 30\% @ n_{\rm b} \sim 0.01 0.4 n_0$
- since torsional oscillations are transverse, superfluid neutrons can not contribute to such oscillations.
 - one show introduce the effective enthalpy
 - at zero-temperature, $\mu_{\rm b}$ = H / $n_{\rm b}$

$$\overline{H} = \overset{a}{\underset{e}{\overset{e}{0}}} 1 - \frac{N_s}{A} \overset{0}{\varnothing} H$$

m

$$\mathcal{Y}'' + \left[\left(\frac{4}{r} + \Phi' - \Lambda' \right) + \frac{\mu'}{\mu} \right] \mathcal{Y}' + \underbrace{\left(\frac{\ell + p}{\mu} \omega^2 e^{-2\Phi} - \frac{(\ell + 2)(\ell - 1)}{r^2} \right] e^{2\Lambda} \mathcal{Y} = 0.$$

identification of SGR 1806-20

constraint on L via SGR 1806-20

constraint on L via SGR 1900+14

allowed region for L

missing effects ??

modification of shear modulus

size of nuclei

blue : decrease red : increase

- electron screening (Horowitz & Hughto 08; Kobyakov & Pethick 13)
- existence of pasta phase (Sotani 11; Gearheart+11; Newton+13)
- paring effect and shell effect (Deibel+13)
- **superfluidity** (Chamel 12, 13; Sotani+12; Deibel+13)
- magnetic field (Sotani+; Colaiuda & Kokkotas; Gabler+; Passamonti+; Lander+; Deibel+13)
- emission mechanism ??

<u>summary</u>

- asteroseismology could be powerful approach to see the interior properties of neutron stars.
 - QPOs in SGRs may be good examples to adopt the asteroseismology
- compering the torsional oscillations to the observational evidences, we can get the constraint on *L* as $L \ge 50$ MeV.
- superfluid effect enhances the frequencies of torsional oscillations.
 - $100 \leq L \leq 130$ MeV, if all QPOs come from torsional oscillations
 - 58 ≤ L ≤ 85 MeV, if QPOs except for 26 Hz QPO coms from torsional oscillations
- we should take into account additional missing effects.

alternative possibility

instead of previous correspondence, i.e., I = 4, 8, 13 for SGR 1900+14, and I = 3, 4, 5, 15 for SGR 1806-20, we may consider alternative possibility as

26 Hz QPO observed in SGR 1806-20 remains a complete puzzle !!

relative error

• previous identification

QPOs (Hz)	1	₀ <i>t</i> / (Hz)	error (%)
18	3	18.50	-2.79
26	4	24.82	4.53
30	5	30.96	-3.19
92.5	15	90.18	2.51

QPOs (Hz)	1	₀ <i>t</i> / (Hz)	error (%)
28	4	27.26	2.63
54	8	53.76	4.50
84	13	86.18	-2.60

• alternative identification

QPOs (Hz)	1	₀ <i>t</i> / (Hz)	error (%)
18	2	18.23	-1.27
26			
30	3	28.82	3.93
92.5	10	94.70	-2.38

QPOs (Hz)	1	₀ <i>t</i> / (Hz)	error (%)
28	3	27.74	0.93
54	6	55.48	-2.74
84	9	82.29	2.04

alternative allowed region for L

XXVII Texas Symposium@Dallas

other constraints on L

- other constraints suggests $L \sim 60\pm 20 \text{ MeV}$?
 - this means case 2 may be faivored ??
 - if so, one has to prepare another oscillation mechanism...

oscillations in NSs

- polar oscillations
 - fluid modes
 - \checkmark fundamental mode (f -mode) ... ~ kHz
 - ✓ pressure mode (p-mode) ... > a few kHz
 - ✓ gravity mode (g-mode) ... < a few 100 Hz</p>
 - ✓ rotational mode (r-mode) ... ~ rotation frequency
 - relativistic modes
 - ✓ spacetime mode (w-mode) ... > a few tens kHz
- axial oscillations
 - fluid modes; torsional mode (t-mode) ... > ten Hz
 - relativistic modes; w-mode ... > a few tens kHz

identification of SGR 1900+14

- region of pasta phase depends strongly on L
- for $L \gtrsim 100 \text{MeV}$, pasta structure almost disappears

constraint on S₀

• by using the empirical relation :

$$S_0 = 28 + 0.075L$$
(Oyamatsu & lida 03)

comparing with other EOS

- new EOS (Miyatsu+ 13)
 - core : RMF calculation
 - crust : TF theory
- EOS parameters
 - *L* = 77.1 MeV
 - $K_0 = 274 \text{ MeV}$
- even with new EOS, the dependence of torsional oscillations on *L* is same as the previous results.

effect of electron screening

- contribution due to Coulomb interaction
 - Ogata & Ichimaru 90; Strohmayer+ 91

$$\mu = 0.1194 \times \frac{n_i (Ze)^2}{a}$$

- including effect of electron screening
 - Horowitz & Hughto 08 : 10% reduction
 - Kobyakov & Pethick 13

$$\mu = 0.1194 \left[1 - 0.010 Z^{2/3} \right] \frac{n_i (Ze)^2}{a}$$

effect of electron screening

- ~11.7% reduction for Z = 40

• phonon contribution is much smaller (Baiko 12)

adopted EOS

- outer crust
 - Haensel & Pichon 94
- inner crust
 - compressible liquid drop model (CLDM)
 - Kobyakov & Pethick 13 (KP2013) based on Lattimer & Swesty 91
 - Douchin & Haensel 01 (DH2001)

	KP2013	DH2001
model neutron skin $n_{bc} [1/\text{fm}^3]$ $\rho_c [\text{g/cm}^3]$	CLDM × 8.913×10^{-2} 1.504×10^{14}	CLDM \bigcirc 7.596×10^{-2} 1.285×10^{14}

crust models

 quite difficult to distinguish the difference in crust thickness with DH2001 and with KP2013

other properties

- charge depends strongly on the EOS at the crust basis
- radius of WS cell also depends on the EOS

constraint on L

 due to the electron screening effect, constraint of L shifts ~14% smaller value

modified constraints on L

 adopting the reduction of frequencies due to the electron screening effect, constraints on L become as follows;

fundamental oscillations

(HS 13)

- one may be identify the EOS using the observations of crustal oscillations
- independent of the stellar mass and the crust EOS, the effect of electron screening can reduce 6% of the frequencies

