Nuclear Matter Incompressibility and Giant Monopole Resonances

C.A. Bertulani

Department of Physics and Astronomy Texas A\&M University-Commerce

Collaborator: Paolo Avogadro

Iron core in core-collapse supernovae

The iron core grows and becomes dynamically unstable as it approaches the critical mass. The main reactions are

$$
\begin{array}{ccc}
{ }^{56} \mathrm{Fe} \rightarrow 13^{4} \mathrm{He}+4 \mathrm{n} \\
\mathrm{p}+\mathrm{e}^{-} \rightarrow \mathrm{n}+v_{\mathrm{e}} & \longleftarrow & \text { Needs energy }(124 \mathrm{MeV}) \\
& \begin{array}{c}
\text { Neutrino escapes }
\end{array} \\
\downarrow
\end{array}
$$

Pressure decreases and the core collapses

The Equation of State (EoS) has to cover densities of $10^{9}-10^{15} \mathrm{~g} / \mathrm{cm}^{3}$
Nuclei are bound into nuclei until they merge ($\rho_{0} \sim 10^{14} \mathrm{~g} / \mathrm{cm}^{3}$)
Pressure is essentially dominated by $e^{-}(\gamma=\partial \ln P / \partial \ln \rho=4 / 3)$
For $\rho>\rho_{0}$, nuclear matter becomes very hard ($\gamma \sim 2$)

EOS

Below nuclear density:

- Matter is described by nuclei surrounded by a "gas" of nucleons and alpha particles
- Electrons are uniformly distributed in space, inside and outside nuclei.
- In equilibrium

$$
\mu_{e}=\mu_{n}-\mu_{p}
$$

- At high densities nuclear matter fills the space uniformly
- Techniques for computing EOS: liquid drop, Thomas-Fermi, Hartree-Fock
- EOS is obtained by minimizing the free energy of the system for each entropy and Y_{e}

EOS

Above nuclear density:

- Maximum density occurs when the inner central core reaches $\rho \sim 5 \rho_{0}$
- the compressibility has to be enough to allow the existence of neutron stars with $M \sim 1.4 M_{\odot}$ or larger.

$$
K_{\infty}=\left.9 \rho^{2} \frac{d^{2}[E(\rho) / \rho]}{d \rho^{2}}\right|_{\rho_{0}}
$$

EOS - Experimental Observations

- Analysis of Giant Isoscalar Resonances ISGMR ($T=0, L=0$)
- Relativistic heavy ion collisions
- Neutron masses

ISGDR ($T=0, L=1$)
Giant Resonance: Coherent vibration of nucleons in a nucleus

- Resonances related to incompressibility: ISGMR, ISGDR, ISGQR

ISGQR ($T=0, L=2$)

$$
\mathrm{E}_{\mathrm{ISGMR}} \approx \sqrt{\frac{\mathrm{~K}_{\mathrm{A}}}{\mathrm{~m}\left\langle\mathrm{r}^{2}\right\rangle}}
$$

$$
c \approx 1
$$

$$
K_{A}=K_{\infty}\left(1+\mathrm{cA}^{-1 / 3}\right)+\mathrm{K}_{\tau}\left(\frac{\mathrm{N}-\mathrm{Z}}{\mathrm{~A}}\right)^{2}+\mathrm{K}_{\mathrm{Coul}} \mathrm{Z}^{2} \mathrm{~A}^{-4 / 3}
$$

- $\mathrm{K}_{\text {coul }}$ is basically model independent
- Measurements over several isotopes should give $\mathrm{K} \tau$
- Ki critical to understand neutron stars

EOS - Theoretical Methods

- Build an energy functional $E[\rho]$ using an mean field calculation Each such a functional characterizes a K_{∞}
- Get excitations such as the ISGMR from a self-consistent QRPA calculation

$$
\begin{aligned}
& \text { For the nucleon-nucleon interaction } \\
& \mathrm{V}\left(\mathbf{r}_{\mathrm{i}}, \mathbf{r}_{\mathrm{j}}\right)=\mathrm{V}_{\mathrm{ij}}^{\mathrm{NN}}+\mathrm{V}_{\mathrm{ij}}^{\text {toul }} \quad \mathrm{V}_{\mathrm{ij}}^{\text {Col }}=-\frac{\mathrm{e}^{2}}{4} \sum_{\mathrm{i}, \mathrm{j}=1} \frac{\tau_{\mathrm{ij}}+\tau_{\mathrm{ij}}}{\left|\mathbf{r}_{\mathrm{i}}-\mathbf{r}_{\mathrm{j}}\right|}, \quad \tau_{i j}=\tau_{i}+\tau_{j} \\
& V_{\mathrm{ij}}^{\mathrm{NN}}=\mathrm{t}_{0}\left(1+\mathrm{x}_{0} \mathrm{P}_{\mathrm{ij}}^{\sigma}\right) \delta\left(\mathbf{r}_{\mathrm{i}}-\mathbf{r}_{\mathrm{j}}\right)+\frac{1}{2} \mathrm{t}_{1}\left(1+\mathrm{x}_{1} \mathrm{P}_{\mathrm{ij}}^{\sigma}\right)\left[\overleftarrow{\mathbf{k}}_{\mathrm{ij}}^{2} \delta\left(\mathbf{r}_{\mathrm{i}}-\mathbf{r}_{\mathrm{j}}\right)+\delta\left(\mathbf{r}_{\mathrm{i}}-\mathbf{r}_{\mathrm{j}}\right) \overrightarrow{\mathbf{k}}_{\mathrm{ij}}^{2}\right]+ \\
& \mathrm{t}_{2}\left(1+\mathrm{x}_{2} \mathrm{P}_{\mathrm{ij}}^{\sigma}\right) \overleftarrow{\mathbf{k}}_{\mathrm{ij}} \delta\left(\mathbf{r}_{\mathrm{i}}-\mathbf{r}_{\mathrm{ij}}\right) \overrightarrow{\mathbf{k}}_{\mathrm{ij}}+\frac{1}{6} \mathrm{t}_{3}\left(1+\mathrm{x}_{3} \mathrm{P}_{\mathrm{ij}}^{\sigma}\right) \rho^{\alpha}\left(\frac{\mathbf{r}_{\mathrm{i}}+\mathbf{r}_{\mathrm{j}}}{2}\right) \delta\left(\mathbf{r}_{\mathrm{i}}-\mathbf{r}_{\mathrm{j}}\right)+ \\
& \mathrm{iW}_{0} \overline{\mathbf{k}}_{\mathrm{ij}} \delta\left(\mathbf{r}_{\mathrm{i}}-\mathbf{r}_{\mathrm{j}}\right)\left(\vec{\sigma}_{\mathrm{i}}+\vec{\sigma}_{\mathrm{j}}\right) \overrightarrow{\mathbf{k}}_{\mathrm{ij}}, \\
& \mathrm{~V}_{\mathrm{ij}}^{\text {Col }}=-\frac{\mathrm{e}^{2}}{4} \sum_{\mathrm{i}, \mathrm{j}=1}^{\mathrm{A}} \frac{\tau_{\mathrm{ij}}^{2}+\tau_{\mathrm{ij}}}{\left|\mathbf{r}_{\mathrm{i}}-\mathbf{r}_{\mathrm{j}}\right|}, \quad \tau_{i j}=\tau_{i}+\tau_{j} \\
& t_{i}, x_{i}, \alpha, W_{0} \text { are } 10 \text { Skyrme parameters } \\
& \varepsilon[\rho]=\langle\Phi| \mathrm{T}+\mathrm{V}_{\mathrm{ij}}^{\mathrm{Coul}}+\mathrm{V}_{\mathrm{ij}}^{\mathrm{NN}}|\Phi\rangle
\end{aligned}
$$

+ pairing

$H F+B C S$

$$
\Delta_{i}=\frac{1}{2} \sum_{j} \frac{G_{i j} \Delta_{j}}{\sqrt{\left(\varepsilon_{j}-\lambda\right)^{2}+\Delta_{j}^{2}}}\left(\begin{array}{cc}
h_{H F}-\lambda & \Delta \\
-\Delta & -h_{H F}+\lambda
\end{array}\right)\binom{u_{k}}{v_{k}}=E_{k}\binom{u_{k}}{v_{k}}
$$

$$
\mathbf{v}_{\mathrm{NN}}{ }^{\text {eff }}=\underline{\text { Skyrme }+ \text { pairing force }}
$$

$$
\begin{aligned}
& V=V_{0}\left[1-\eta\left(\frac{\rho(\mathbf{r})}{\rho_{0}}\right)^{\alpha}\right] \delta\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right), \quad \rho_{0}=0.16 \mathrm{fm}, \quad \alpha=1 \\
& \eta= \begin{cases}0, & \text { "volume"pairing } \\
1, & \text { "surface"pairing } \\
1 / 2, & \text { "mixed"pairing }\end{cases}
\end{aligned}
$$

EOS + Pairing

Protons and neutrons tend to pair up, much like Cooper pairs of electrons in superconductors. Pairing is important in nuclei and neutron stars, but a clear understanding of the microscopic foundation of the pairing functional is still lacking.

Pairing Measure

three-point

$$
\Delta^{(3)}=\frac{1}{2}(-1)^{\mathrm{N}}[\mathrm{~B}(\mathrm{~N}-1)+\mathrm{B}(\mathrm{~N}+1)-2 \mathrm{~B}(\mathrm{~N})]
$$

four-point $\quad \Delta^{(4)}=\frac{1}{4}(-1)^{N}[3 B(N-1)-3 B(N)-B(N-2)+B(N+1)]$
or higher?

From experiment:

- $\Delta^{(3)}$ larger for $(-1)^{\mathrm{N}}=+1$
- $\Delta^{(3)}$ smaller for $(-1)^{\mathrm{N}}=-1$
- $\Delta^{(4)}$ reflects average of $\Delta^{(3)}(\mathrm{N})$ and $\Delta^{(3)}(\mathrm{N}-1)$
($\Delta^{(4)}$ no additional information)

Can Microscopic Models do better than LDM?

Blocking Procedure for Odd Nucleons

$V_{\text {pairing }}(k)$

$\Lambda \sim 50 \mathrm{MeV}$

Pairing Improves Nuclear Properties

- \quad-even, 521 nuclei, rms $=2.83 \mathrm{MeV}$
- $\quad \mathrm{N}$-odd, 498 nuclei, $\mathrm{rms}=2.71 \mathrm{MeV}$

Separation energies staggering

Pairing vs Level Properties

$$
\Delta^{(3)}=\frac{1}{2}(-1)^{N}[B(N-1)+B(N+1)-2 B(N)] \Rightarrow 2(-1)^{N} \Delta^{(3)} \cong \frac{\partial^{2} B}{\partial N^{2}}=\frac{\partial \lambda}{\partial N}=\frac{1}{g(\lambda)}
$$

Fermi energy $(\lambda=\partial B / \partial N) \quad$ s.p. level density $(g(e)=d N / \partial e)$

Jahn-Teller mechanism: spherical symmetry spontaneously broken $\square(2 j+1) \rightarrow$ double-degenerate orbits $\square \Delta^{(3)}$ alternates for $(-1)^{\mathrm{N}}=+$ and -

Pairing vs Level Properties

Macroscopic-microscopic model: $\quad B=E_{s p}-\widetilde{E}_{s p}+E_{\text {macro }}, \quad E_{s p}=\sum_{k=1}^{A} e_{k}$
$E_{\text {macro }}=\cdots+a_{I} \frac{(N-Z)^{2}}{A}, \quad a_{I}=23 \mathrm{MeV} \quad \Rightarrow \quad \Delta^{(3)}=\frac{23}{A} \mathrm{MeV}$
$\tilde{E}_{s p}$ contribution: $g(\lambda)=\frac{3 a}{\pi^{2}}, a \cong \frac{A}{8} \mathrm{MeV} \quad \square \Delta^{(3)} \cong-\frac{1}{g(\lambda)} \cong-\frac{25}{A} \mathrm{MeV}$

$$
\begin{aligned}
& \begin{aligned}
& \Delta^{(3)}(N) \cong-\frac{1}{2} \delta \mathrm{e} \\
&+ \text { LDM corrections } \\
& 2\left[\Delta^{(3)}(\text { even })-\Delta^{(3)}(\text { odd })\right] \\
& \cong e_{\mathrm{n}+1}-e_{n}
\end{aligned}
\end{aligned}
$$

Satula, Dobaczewski, Nazarewicz, PRL 81, 3599 (1998).

The uNclear Nuclear Pairing - UNEDF Collaboration

- Mass tables for 2,400 nuclei have been analyzed using different forms and methodologies for the pairing mechanism
- New functional forms for the pairing interaction have been proposed

$\Delta^{(3)}=\frac{1}{2}(-1)^{N}[B(N-1)+B(N+1)-2 B(N)]$
Bertsch, Bertulani, Nazarewicz, Schunck, Stoitsov, PRC 79, 0343306 (2009)

QRPA: The Role of the Rearrangement Term

Avogadro, Bertulani, PRC 88, 044319 (2013)

- Fully self consistent EWSR $=99.2 \%$

$$
\mathrm{h}=\frac{\delta \mathrm{E}_{\text {kin }}}{\delta \rho}+\frac{\delta \mathrm{E}_{\text {skyrme }}}{\delta \rho}+\frac{\delta \mathrm{E}_{\text {pair }}}{\delta \rho}+\frac{\delta \mathrm{E}_{\text {Coul }}}{\delta \rho}
$$

- Without Rearrangement in EWSR $=116 \%$

$$
\begin{aligned}
& \quad \frac{\delta h_{\text {rearr }}}{\delta \rho}=\frac{\delta}{\delta \rho}\left(\frac{\delta E_{\text {pair }}}{\delta \rho}\right) \\
& \neq 0 \text { if } E_{\text {pair }} \text { depends on density } \\
& \text { Calculations without } \\
& \text { rearrangements tend to } \\
& \text { return higher centroids } \\
& \text { respect to the fully self- } \\
& \text { consistent case. }
\end{aligned}
$$

Dependence on Functional

Sn

$$
\left.S(E)=\sum_{j}\left|\langle 0| F_{0}\right| j\right\rangle\left.\right|^{2} \delta\left(E-E_{0}\right)
$$

$$
F_{0}=\hat{e_{1} r_{1}^{r}}
$$

$$
m_{s}=\tilde{j}_{j^{\prime}}{ }^{\prime}(E) d E
$$

Isovector pairing

$$
\begin{aligned}
& \qquad v\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=\mathrm{v}_{0}\left[1-\eta\left(\frac{\rho}{\rho_{0}}\right)^{\gamma}\right] \delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \\
& \mathrm{v}_{\text {pair }}^{\mathrm{MSH}}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=\mathrm{v}_{0}\left[1-(1-\delta) \eta_{\mathrm{s}}\left(\frac{\rho}{\rho_{0}}\right)^{\alpha_{\mathrm{s}}}-\delta \eta_{\mathrm{n}}\left(\frac{\rho}{\rho_{0}}\right)^{\alpha_{\mathrm{n}}}\right] \delta\left(\mathbf{r}, \mathbf{r}^{\prime}\right) \\
& \text { Margueron, Sagawa, Hagino, PRC 76, 064316 (2007) } \\
& \mathrm{v}_{\text {pair }}^{\mathrm{MSH}}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=\mathrm{v}_{0}\left[1-\left(\eta+\eta_{1} \tau_{3} \delta\right) \frac{\rho}{\rho_{0}}-\eta_{2}\left(\delta \frac{\rho}{\rho_{0}}\right)^{2}\right] \delta\left(\mathbf{r}, \mathbf{r}^{\prime}\right) \\
& \left.\hline \begin{array}{l}
\mathrm{n}
\end{array}\right) \rho_{\mathrm{p}} \\
& \hline \frac{\rho_{\mathrm{n}}-\rho_{\mathrm{p}}}{\rho}
\end{aligned}
$$

Yamagami, Shimizu, Nakatsukasa, PRC 80, 064301 (2009)

Isovector pairing - Good globabl fits to pairing gaps

Bertulani, Liu,, Sagawa, PRC 85, 014321 (2012)

Isovector pairing - Reasonable Nuclear Radii

Bertulani, Liu,, Sagawa, PRC 85, 014321 (2012)

Isovector pairing - Reasonable Nuclear Skins

Bertulani, Liu,, Sagawa, PRC 85, 014321 (2012)

Isovector pairing - Improves Centroids of ISGMR

Isovector pairing - ISGMR - Comparison to Recent Data

TAMU/ RCNP	nucleus	ph	pp	diff.
	${ }^{204-206-208} \mathrm{~Pb}$	SLy5	all	<0.1
TAMU/ RCNP	${ }^{144} \mathrm{Sm}$	SkM*	volume	-0.1
TAMU/ RCNP	${ }^{90} \mathrm{Zr}$	SLy5	all	$+0.2$
	${ }^{92} \mathrm{Zr}$	SLy5	volume	- 0.4
TAMU	${ }^{94} \mathrm{Zr}$	Skxs20	surface	$+0.8$
TAMU	${ }^{92} \mathrm{Mo}$	SLy5	volume	1.6
	${ }^{94} \mathrm{Mo}$	Skxs20	surface	$+0.0$
RCNP	${ }^{112-114-118-120} \operatorname{Sn}[4]$	Skxs20	mixed	<0.1
	${ }^{122-124} \mathrm{Sn}[4]$	Skxs20	surface	<0.1
	${ }^{116} \mathrm{Sn}[4]$	SkM*	surface	<0.1
TAMU	${ }^{112-124} \mathrm{Sn}[35]$	Skxs20	surface	≈ 0.8
	${ }^{116} \mathrm{Sn}[35]$	Skxs20	surface	$+0.2$
RCNP	106-110-112-114-116 Cd [6]	Skxs20	surface	< 0.1
TAMU	${ }^{110-116} \mathrm{Cd}[46]$	Skxs20	surface	≈ 0.9

Avogadro, Bertulani, PRC 88, 044319 (2013)

Conclusions

EOS \& Pairing Conundrum

- Nuclear pairing evidently improves masses, separation energies and staggering effects in microscopic approaches: HF + BCS or HFB.
- Inclusion of pairing complicates determination of best Skyrme models. E.g., 20% of the nuclei well explained with the SLy5 interaction, and 10% with the SkM^{*} interaction.
- Isovector pairing improves nuclear properties \leftarrow at the cost of additional parameters
- Detailed studies using HFB + QRPA + isovector pairing with comparison with newest data on ISGMR (RCNP and TAMU)
\rightarrow
ISGMR is better reproduced with the soft interaction Skxs20 ($K_{\infty} \approx 202$ MeV), in contrast with the generally accepted value for $\mathrm{K}_{\infty} \approx 230 \mathrm{MeV}$.

