Relativistic Radioactive Beams as a Tool for Nuclear Astrophysics

FAIR – Facility for Antiproton and Ion Research

Figure 1.1: Artists view of FAIR. The synchrotrons on the right will be located 10 to 13 m underground and will not be visible in reality. Most of the roofs will be vegetated and thus most of the facility will be hidden from view.

High-energy radioactive beams at FAIR

Reactions with neutron-proton asymmetric nuclei

30

A laboratory for studying nuclear properties as a function of isospin and density:

Reactions with neutron-proton asymmetric nuclei

Reactions with Relativistic Radioactive Beams

rp-proces

E_b (MeV)

20

nuclei

stable nuclei N/Z = 1 - 1.5

Redistribution of collective strength
 r-process (Pygmy and Giant Resonances)
 Nucleosynthesis processes

Symmetry energy (neutron pressure)

Symmetry energy and dipole response

S. Typel and B.A. Brown, Phys. Rev. C **64** (2001) 027302

n-skin from Pygmy strength n-skin from polarizability

A. Klimkiewicz et al., PRC 76 (2007) 051603(R)
A. Carbone et al., PRC 81 (2010) 041301(R)
P.-G. Reinhard, W. Nazarewicz, PRC 81 (2010) 051303(R)
A. Tamii et al., Phys. Rev. Lett. 107 (2011) 062502.

Production of fast exotic nuclei

- Stable beams from SIS, fragmentation on Be target or in-flight fission
- Selection of radioactive beams in Fragment Separator (FRS)

Experimental Setup

$$E^* = \sqrt{\sum_i m_i^2 + \sum_{i \neq j} \gamma_i \gamma_j m_i m_j \left(1 - \beta_i \beta_j \cos \vartheta_{ij}\right) + E_\gamma - m_{proj}}$$

Analysis of ⁶⁸Ni: decay after Coulomb excitation

gamma sum energy

consistent fit taking into account:

1) invariant mass, but also information of subsets like $E_{kin}(n)$, $E_{\gamma sum}$ etc.

2) detailed knowledge about detector response function

analysis: Dominic Rossi PhD Thesis Univ. Mainz, PostDoc GSI Now MSU

Dipole strength distribution of ⁶⁸Ni

Simultaneous fit of spectra with 8 individual energy bins as free fit parameters: "deconvolution"

Polarizability and neutron skin

$$\alpha_D = \frac{hc}{2\pi^2} \int_0^\infty \frac{\sigma(E)}{E^2} dE$$

Neutron-skin thickness $\Delta R_{n,p} = 0.175(21)$ fm

Theoretical calculations from J. Piekarewicz, PRC 83, 034319 (2011)

Neutron skin in ²⁰⁸Pb from different methods

Proposed experimental programme

Next-generation experiments – Goals:

- extraction of full dipole strength function (below and above threshold, extracting E2 contribution, γ (-cacade) and neutron channels)
- development of strength with neutron excess
- relation to symmetry energy
- characteristic of low-lying strength (isospin structure, decay properties)

N=82 isotones

Sm 144

Measurement of the dipole polarizability of the unstable neutron-rich nucleus ⁶⁸Ni

D.M. Rossi,^{1,2,*} P. Adrich,¹ F. Aksouh,^{1,†} H. Alvarez-Pol,³ T. Aumann,^{4,1,‡} J. Benlliure,³ M. Böhmer,⁵ K. Boretzky,¹ E. Casarejos,⁶ M. Chartier,⁷ A. Chatillon,¹ D. Cortina-Gil,³ U. Datta Pramanik,⁸ H. Emling,¹ O. Ershova,⁹ B. Fernandez-Dominguez,^{3,7} H. Geissel,¹ M. Gorska,¹ M. Heil,¹ H.T. Johansson,^{10,1} A. Junghans,¹¹ A. Kelic-Heil,¹ O. Kiselev,^{1,2} A. Klimkiewicz,^{1,12} J.V. Kratz,² R. Krücken,⁵ N. Kurz,¹ M. Labiche,^{13,14} T. Le Bleis,^{1,9,15} R. Lemmon,¹⁴ Yu.A. Litvinov,¹ K. Mahata,^{1,16} P. Maierbeck,⁵ A. Movsesyan,⁴ T. Nilsson,¹⁰ C. Nociforo,¹ R. Palit,¹⁷ S. Paschalis,^{4,7} R. Plag,^{9,1} R. Reifarth,^{9,1} D. Savran,^{18,19} H. Scheit,⁴ H. Simon,¹ K. Sümmerer,¹ A. Wagner,¹¹ W. Waluś,¹² H. Weick,¹ and M. Winkler¹ ¹GSI Helmholtzzentrum für Schwerionenforschung GmbH, D-64291 Darmstadt, Germany ²Institut für Kernchemie, Johannes Gutenberg-Universität, D-55128 Mainz, Germany ³University of Santiago de Compostela, E-15705 Santiago de Compostela, Spain ⁴Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt, Germany ⁵Physik-Department E12, Technische Universität München, D-85748 Garching, Germany ⁶University of Vigo, E-36310 Vigo, Spain ⁷University of Liverpool, Liverpool L69 7ZE, United Kingdom ⁸Saha Institute of Nuclear Physics, Kolkata 700-064, India ⁹Institut für Angewandte Physik, Goethe Universität, D-60438 Frankfurt am Main, Germany ¹⁰Chalmers University of Technology, SE-41296 Göteborg, Sweden ¹¹Helmholtz-Zentrum Dresden-Rossendorf e.V., D-01328 Dresden, Germany ¹² Jagiellonian University, PL-30-059 Krakow, Poland ¹³University of the West of Scotland, Paisley PA1 2BE, United Kingdom ¹⁴STFC Daresbury Laboratory, Warrington WA4 4AD, United Kingdom ¹⁵Institut Pluridisciplinaire Hubert Curien, F-67037 Strasbourg, France ¹⁶Bhabha Atomic Research Centre, Mumbai 400-085, India ¹⁷ Tata Institute of Fundamental Research, Mumbai 400-005, India ¹⁸ExtreMe Matter Institute EMMI and Research Division. GSI Helmholtzzentrum für Schwerionenforschung GmbH, D-64291 Darmstadt, Germany ¹⁹Frankfurt Institute for Advanced Studies, D-60438 Frankfurt am Main, Germany

Summary

- Dipole response of n-rich nuclei Pygmy Resonance
 - Low-lying dipole strength observed in n-rich nuclei, 'proton-Pygmy' in $^{32}\mathrm{Ar}$
 - many open questions next-generation experimental program planned at GSI, RIKEN, SDALINAC, HIγS, Osaka, ...

systematics, strength and position as a function of N-Z (and mass)

isospin character (isoscalar dipole)

decay properties

relation to nuclear-matter properties

relation to observed low-lying strength for stable nuclei

extraction of quadrupole strength

- Dipole response of ⁶⁸Ni
 - 25(2)% non-statistical decay
 - PDR: 2.8(5)% EWSR, 7(2)% direct gamma decay
 - Dipole polarizability extracted for the first time for a radioactive nucleus

This opens the possibility for systematic studies as a function of N-Z which will enable to provide tight constraints on neutron skins and the density dependence of the symmetry energy

