CMB anomalies (in WMAP9 and Planck)

> Dragan Huterer Physics Department University of Michigan

Copi, Huterer, Schwarz & Starkman – arXiv:1310.3831 (low power) – arXiv:1311.4862 (alignments) review in Adv. Astro., 847531 (2010), arXiv:1004.5602

Philosophy:

Anomalies are almost always *a posteriori* nature – they are not (*a priori*) predicted

Not every 'anomaly' is equally compelling: in this talk, the **largest-scale** anomalies

Summary:

1. Angular 2-pt function $C(\theta)$ vanishes for $\theta \ge 60 \text{ deg}$ 2. Quadrupole and octopole are unusually planar, and the plane is nearly perpendicular to some special directions on the sky

Missing Large-Angle Power

Power at θ≈60 deg vanishes in cut-sky maps

$S_{1/2}$ statistic: (Spergel et al 2003)

 $S_{1/2} \equiv \int_{-1}^{1/2} [C(\theta)]^2 d(\cos \theta)$

	U74		KQ75y9	
Map	$S_{1/2} \; (\mu {\rm K})^4$	p (%)	$S_{1/2} \; (\mu { m K})^4$	$p\left(\% ight)$
WMAP ILC 7yr	1620.3	0.208	1247.0	0.090
WMAP ILC 9yr	1677.5	0.232	1311.8	0.109
<i>Planck</i> SMICA	1606.3	0.202	1075.5	0.053
<i>Planck</i> NILC	1618.6	0.208	1096.2	0.058
<i>Planck</i> SEVEM	1692.4	0.239	1210.5	0.082
WMAP W 7yr	1839.0	0.304	1128.5	0.064
WMAP W 9yr	1864.2	0.317	1138.3	0.066
Planck HFI 100	1707.5	0.245	916.3	0.028
<i>WMAP V</i> 7yr	1829.2	0.300	1276.2	0.099
WMAP V 9yr	1840.4	0.304	1268.8	0.097
Planck LFI 70	1801.7	0.287	1282.1	0.101

(frequentist) significance $\geq 99.7\%$ in all cases

Remarkably consistent across experiments, frequencies, foreground cleanings:

 \Rightarrow primordial? or a statistical fluke?

Large-scale alignments

$\ell = 2$, 3 are aligned and planar

$$\hat{L}_{\ell}^{2} \equiv \frac{\sum_{m=-\ell}^{\ell} m^{2} |a_{\ell m}|^{2}}{\ell^{2} \sum_{m=-\ell}^{\ell} |a_{\ell m}|^{2}}$$

ℓ=3 is planar: P~1/20

 $\ell=2,3$ is are aligned: P~1/60

de Oliveira-Costa, Tegmark, Zaldarriaga & Hamilton 2004

... and still are

	Unco	prrected	DQ	DQ corrected	
Map	$ m{\hat{n}}_2\cdotm{\hat{n}}_3 $	p-value (%)	$ m{\hat{n}}_2 \cdot m{\hat{n}}_3 $	p-value (%)	
WMAP ILC 7yr	0.9999	0.006	0.9966	0.327	
WMAP ILC 9yr	0.9985	0.150	0.9948	0.511	
<i>Planck</i> NILC	0.9902	0.955	0.9988	0.118	
<i>Planck</i> SEVEM	0.9915	0.825	0.9995	0.055	
<i>Planck</i> SMICA	0.9809	1.883	0.9965	0.338	

• Based on 10^6 simulated maps

- We inpaint Planck maps with Galactic cuts numerically heavy part of calculation
- Correcting for the kinematic quadrupole (DQ) is important

Multipole vectors

Lth multipole \Leftrightarrow L (headless) vectors, and a constant $\sum_{m=-\ell}^{\ell} a_{lm} Y_{lm}(\theta, \phi) = A^{(\ell)} \left(\mathbf{v}_1^{(\ell)} \cdot \mathbf{e} \right) \cdots \left(\mathbf{v}_{\ell}^{(\ell)} \cdot \mathbf{e} \right)$

Copi, Huterer & Starkman 2003; <u>http://www.phys.cwru.edu/projects/mpvectors/</u> J.C. Maxwell, "Treatise on Electricity and Magnetism", 1873

Probability for alignment of Q+O structure with Ecliptic: 2%-4%

Probability for alignment of Q+O structure with Dipole: 0.1%-0.4%

which are independent of the previously quoted

Probability for Q and O to be mutually aligned and planar 0.05%-0.3%

Copi et al, arXiv:1311.4862

Movie by Craig Copi

If this is a statistical fluke, CMB polarization <u>may</u> successfully confirm that

Copi et al, *MNRAS* **434**, 3590 (2013),

Conclusions

- Angular power is nearly zero at $\theta \ge 60 \text{ deg}$
- Quadrupole and octopole planar, nearly perpendicular to dipole and ecliptic plane
- Several separate \geq 3-sigma anomalies, they are *a posteriori*...
- ... but all have to do with <u>largest</u> observed scales!
- Suppression of $C(\theta)$ seems *very* robust to map/ experiment choice, frequency, etc
- No compelling explanations to date, cosmological or systematic

EXTRA SLIDES

Can one see effect of such large-angle power suppression in future LSS surveys?

Gibelyou, Huterer & Fang 2010