Linear Polarization of CMB and 21cm & Circular Polarization of CMB

Soma De

Post-doctoral Fellow, Arizona State University presentation at 27th Texas Symposium, Dec 11,2013

> Collaboration: Levon Pogosian (Dept of Physics, SFU) Hiroyuki Tashiro (Dept of Physics, ASU) Tanmay Vachaspati (Dept of Physics, ASU)

ArXiv: (SD,LP,TV) http://arxiv.org/abs/1305.7225 ArXiv: (SD, HT) http://arxiv.org/abs/1307.3584

Galactic RM detection

		and the second						
X	Name - freq (GHz)	$f_{ m sky}$	FWHM (arcmin)	$\Delta_P(\mu \text{K-arcmin})$	(S/l	$(+DL)_{EB}$) $(S/N)_{TB}$ (+DL)	$(S/N)_{BB}$ (+DL)
	Planck LFI - 30	0.6	33	240	5.3	E-4 (same)	2.2E-3 (same)	2.3E-4 (same)
	Planck HFI - 100	0.7	9.7	106	1.4	E-3 (same)	7.5E-4 (same)	6E-5 (same)
	Polarbear - 90	0.024^a	6.7	7.6	1.31	E-2 (1.5E-2)	1.6E-3 (2.0E-3)	4.6E-4 (6.0E-4)
	QUIET II - 40	0.04^a	23	1.7		0.3(0.8)	0.05(0.2)	0.02(0.08)
	CMBPOL - 30	0.6	26	19	1	.0 (same)	0.4 (same)	0.05 (same)
	CMBPOL - 45	0.7	17	8.25		2.1(2.3)	0.8(0.9)	0.12 (0.15)
	CMBPOL - 70	0.7	11	4.23		2.0(2.6)	0.6(0.9)	0.08(0.14)
	CMBPOL - 100	0.7	8	3.22		1.4(2.0)	0.3(0.6)	0.03 (0.07)
	Suborbital - 30	0.1	1.3	3		2.0 (3.1)	0.3(0.7)	0.08(0.2)
	Space - 30	0.6	4	1.4		18 (28)	7 (14)	5 (30)
	Space - 90	0.7	4	1.4		3.3 (6.8)	1.0(2.4)	0.09(0.64)

ABLE I: S/N of the overall detection of the galactic RM spectrum with Planck, Polarbear, QUIET, CMBPOL and ptimistic future sub-orbital and space experiments. Results are presented without and with (+DL) de-lensing by a factor $f_{\rm DL} = 0.01$. (^a based on 0.1 of RM sky.)

(+DL) ~>f_{DL}=0.01

Circular polarization of CMB ?

- Magnetic field, relativistic electrons due to the process of Faraday conversion creates circular polarization in CMB.
- We don't expect CMB to have circular polarization at the surface of last scattering. Current upper limit on V/T_{CMB} ~10⁻⁺ (Ref: Mainini, 2013) using MIPOL at Testa Grigia observatory at the Italian Alps.
- The Milky way magnetic field is too small to generate any significant effect.
- Explosion of first stars have good prospects of generating conditions for CMB circular polarization. Therefore could CMB circular polarization be a good probe for the unobserved first stars? Could galaxy clusters be a significant source as well?

Conclusion and Future prospects

 Low frequency measurement of V signal at high multipoles is a relatively foreground free way to detect the first stars and unique frequency signature (De and Tashiro in prep, 2013).

10 ⁻⁹ 10 ⁻⁶ 10	-3 1 10	³ 10 ⁶	10 ⁹	
Clusters, Voids Galaxies	stars	white dwarfs	Neutron stars	
10 ²⁶ 10 ²⁵ 10 ²³	10 ¹⁰	10 ⁹	ہ 10 ⁶	 Magneti are prev galaxies galaxy
linear size in cm				cluster streng typical
10 ¹³ 10 ¹¹	1	1	1	with co length: Kpc an
mass in solar mass uni	ts			Kpc respec

How to recover faraday rotation angle from CMB data ?

Stokes parameters and Observations

B-mode spectra (PMF)

Stochasticity and isotropy allows us to write

$$\langle B_{l'm'}^* B_{lm} \rangle = 4 \sum_{LM} \sum_{L'M'} \sum_{l_2m_2} \sum_{l'_2m'_2} \xi_{lml_2m_2}^{LM} H_{ll_2}^L \xi_{l'm'l'_2m'_2}^{L'M'} H_{l'l'_2}^{L'} \langle \alpha_{LM}^* E_{l_2m_2}^* \alpha_{L'M'} E_{l'_2m'_2} \rangle$$

$$= \delta_{ll'} \delta_{mm'} 4 \sum_{L} \frac{(2L+1)}{4\pi} C_L^{\alpha\alpha} \sum_{l_2} (2l_2+1) C_{l_2}^{EE} (H_{ll_2}^L)^2$$

$$C_l^{BB} = \frac{1}{\pi} \sum_L (2L+1) C_L^{\alpha\alpha} \sum_{l_2} (2l_2+1) C_{l_2}^{EE} (H_{ll_2}^L)^2$$

E,B-mode spectra (21 cm)

Fluctuations of neutral are only due to baryonic density and ionization fluctuations, hence only E-modes. Polarization due to ionization fluctuations dominate at EoR. This depends on EoR models.

$$C_{l}^{E,i}(v) = \frac{2}{\pi} \int k^{2} dk [x_{H}^{2} P_{\delta}(k) (\Delta_{\delta}^{E}(k, v))^{2} + P_{x}(k) (\Delta_{x}^{E}(k, v))^{2}]$$

$$C_{l}^{BB,obs} = \sum_{L} \frac{2L+1}{4\pi} C_{L}^{Sin(2\alpha)} \sum_{l'} (2l'+1) C_{l'}^{EE} (H_{ll'}^{L})^{2}$$

$$C_{l}^{EE,obs} = \sum_{L} \frac{2L+1}{4\pi} C_{L}^{Cos(2\alpha)} \sum_{l'} (2l'+1) C_{l'}^{EE} (H_{ll'}^{L})^{2}$$