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Inertial Axes⇔ Spin Axes of Gyroscopes

I Experimentally spin axes of gyroscopes
directly give time-evolution of local inertial axes:
inertial guidance systems.

I Argument in opposite direction:
In the local inertial frame of a gyroscope:
no gyroscope-precession.
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Super-precise observational fact

I Spin-axes of gyroscopes do not rotate relative to quasars,
except extremely small dragging effect by Earth rotation:
Lense - Thirring effect, detected by Gravity Probe B.

I Gyros at a few Earth radii: Dragging by Earth negligible.



Mach’s Principle: The Question

I WHAT PHYSICAL CAUSE:
determines the time-evolution of gyroscope axes,
i.e. the time-evolution of inertial axes ?

I John A. Wheeler: “Who gives the marching orders”
to gyroscope axes (= inertial axes)?
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The Postulate formulated by Mach

I Inertial axes exactly follow an average of the motion of
cosmological masses: exact frame dragging.

————

I Newton’s gravitational force: no torque on a gyroscope.
Mach wrote: unknown, what new force could do the job.
General Relativity: gravito-magnetism⇒ Lense-Thirring.

I Mach did not know, what average of cosmological masses
and their motions should be taken.
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Mach’s Principle: Our Results

I Our old results, published in Phys. Rev. 2006 and 2009:
————

exact dragging of inertial axes (Mach’s Principle)
for all linear perturbations on all FRW backgrounds.

————

I Our new results, unpublished:
————

Exact angular momentum constraint equation
for matter angular-momentum on past light-cone:
E X A C T Einstein equation: L I N E A R ord. diff. eq.

————
Mach’s postulate ⇒ L I N E A R relation input, output.
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Significance: Is rotation absolute or relative?
I L O C A L analysis in laboratory, solar system, galaxy:
I Analysis in solar system: Newton correct with

ABSOLUTE-UNAMBIGOUS non-rotating frame.
I General Relativity of solar system (e.g. perihelion shift):

Local non-rotating frames:
ABSOLUTE-UNAMBIGUOUS,

Asymptotic nonrotating frame: observational input,
theoretically:

ABSOLUTE–NO-CAUSE–input-by-hand
via spatial boundary condition,

GR in solar system is not a “Theory of Relativity”.
————

I G L O B A L C O S M O L O G I C A L analysis:
I Local non-rotating system is

nonrotating RELATIVE to average of cosmic matter:
Cosmological GR is a “Theory of Relativity”.
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NON-PERTURBATIVE cosmological geometry
I Spirit of Riemann normal coord. on arbitrary geometry.
I Observation event P0: World-lines of photons observed

give radial coordinate lines on past light-cone (LC).
I Observer at rest relative to asymptotic quasars
⇔ no dipole term in measured Hubble velocities.

I Minkowski corridor along photon world-line arriving at P0:
Local Minkowski Coordinate System at P0 extended along
photon world-line gives spatial separation in frame of
observer (astronomer’s luminosity distance),

P ⇒ coordinate rP with grr = 1.
I Choose polar quasar and zero-meridian quasar

P ⇒ coordinates (θP , φP).
I Equilateral triangles, infinitely narrow: two neighboring

photon world-lines with equal spatial distances rOP = rOP′

generate 2-spheres orthogonal to photon world-lines:

grθ = 0, grφ = 0.
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Gyroscope precession
⇒ toroidal vorticity sector for cosmic matter flow

I Non-perturbative treatment. Exact fields.
I On one past light-cone: decomposition in 3-scalar,

3-vector, 3-tensor sectors rigorously valid.
I On one past light-cone: We neglect tensor sector.
I Scalar sector⇒ no gyroscope-precession⇒ neglect it.

I Gyroscope precession at PO caused only by:
vector sector (divergence-free) ≡ vorticity sector
with JP = 1+ ⇒ toroidal vorticity, relative to PO.

I focus on m = 0. With m = ±1 following trivially.
I Vector spher. harmonics, toroidal sector:

(V (P=+)
`=1,m=0)φ = constant, (V (P=+)

`=1,m=0)θ = 0,

give angular velocity of rigid rotation around z-axis.
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Light cones: Intrinsic geometry UNPERTURBED
by strong toroidal vorticity

I Measure circumference CP of 2-sphere through P.
For simplicity in this talk, assume that (CP/rP) = 2π ⇒
measured light-cone indistinguishable from light cones
in Minkowski and in spatially flat FRW.

I Tensor spherical harmonics with toroidal vorticity,

(T (P=+)
`=1,m=0)αβ = 0.

Metric of 2-spheres must be unperturbed metric,

gθφ = 0, gθθ = r2, gφφ = r2 sin2 θ.

I INTRINSIC 3-GEOMETRY of every light-cone (LC) with
ARBITRARY VORTICITY fields:
⇒ EQUAL to UNPERTURBED intrinsic geometry of LC
in Minkowski and LC in spatially flat FRW.
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From one light cone to a neighbouring one: SHIFT
I Lapse function (elapsed measured time between slices at

fixed χ) is unperturbed, because it is a 3-scalar.
I Only quantity referring to toroidal vorticity: shift-3-vector

` = 1, m = 0 : βφ ≡ β(v , χ), βθ = 0, βχ = 0.

I Hubble H(r) measured

comoving coordinate difference ≡ dχ ≡ a−1 dr ,

at fixed comoving distance: measured time diff. ≡ dt ,

conformal time difference ≡ dη ≡ a−1dt.

I Light-cone coordinates (v , χ, θ, φ) and metric:

v ≡ η + χ ⇒ v labels past light-cone,
ds2 = a2[−dv2 + 2dv dχ + χ2(dθ2 + sin2 θ dφ2)

+ 2βφ χ2 sin2 θ dφ dv].
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Exact angular momentum constraint for
toroidal vorticity on past light-cone of observation

I Exact Einstein tensor for vorticity with (` = 1, m = 0),

2a4Gvφ
(1) =

= ∂2
χβ + (∂χβ) (4χ−1 − 2H) + β (4H′ − 4H2),

where H ≡ a−1(da/dη) and H′ ≡ (dH/dη).

I Matter evolution: If p/ρ approximated time-independent,
a0 ≡ 1, η0 ≡ 1 : a = ηP ⇒ H = P η−1.
Equation for Green function away from δ-function shell,

∂2
ηβ − (∂ηβ) [4(1− η)−1 − 2Pη−1]

− 4β (P + P2) η−2 = 0,

from η = 0 (big bang) to η = 1 (observation): Singular
points of regular type, solutions with algebraic singularities.
Numerical solution of linear diff. eq. of 2nd order needed.
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General Relativity⇒ Gravitomagnetism

I Work on Uniform-Radial-Hubble-Expansion Slices
I Operational definitions via measurements by

Fiducial Observers (FIDOs) at rest on slice with
Local Ortho-Normal Bases (LONBs) denoted by hats.

I Op. Def. of gravitoelectric field ~Eg ≡ ~g :

d
dt

p î ≡ m Eg
î

free-falling quasistatic test particle,

I Op. Def. of gravitomagnetic field ~Bg :

Ωgyro
î
≡ −1

2
Bg

î
precession of gyro comoving with FIDO.

I Gravitomagnetic vector potential ~Ag : ~Bg = curl ~Ag

it follows : ~Ag = ~β ≡ shift vector.



Einstein’s Gô
k̂

Eq.: Angular Momentum Constraint

I NEW: Angular momentum constraints for
Uniform-Radial-Expansion Slices are form-identical for
slices which are spatially flat, hyperbolic, or spherical,

(−∆ + µ2) ~A g = −16πGN ~J ε,

(µ/2)2 ≡ −(dH/dt) ≡ (H-dot radius)−2,
~Jε = energy current density = momentum density

I NEW: Same as Ampère’s law for stationary magnetism
except µ2 ~A g ⇒ Yukawa suppression (H-dot radius).
Elliptic equation (no partial time-derivatives of
perturbations) for time-dependent gravitomagnetism.

I NEW: ~J ε
k̂

= T 0̂
k̂

is measurable input without prior
knowledge of g0i , which is output. T 0

k not measurable.
I NEW in cosmology: Laplacian on Vector Fields in

Riemannian 3-Spaces is de Rham - Hodge Laplacian.
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Solution of the Angular Momentum Constraint

I Identical expressions for solutions of cosmological
gravitomagnetism on Uniform-Radial-Expansion slices,
which are spatially open,

~Bg(P) = −2 ~Ωgyro(P) =

= −4 GN

∫
d(volQ) [~nPQ × ~Jε(Q)] Yµ(rPQ)

Yµ(r) =
−d
dr

[
1
R

exp(−µr)] = Yukawa force

r = radial distance, 2πR = circumference of great circle.
I NEW: Solution form-invariant if one goes to rotating

frame⇔ Only relative motion of quasars and gyroscope
spins is relevant.



Bottom Line: Exact Dragging of Inertial Axes
Mach’s Principle holds for Vorticity, strong or weak

I Inertial axes exactly follow the weighted average of
cosmic energy currents (in all reference frames):

~Ωgyro = < ~Ωmatter > ≡
∫ ∞

0
dr ~Ωmatter(r) W (r),

W (r) =
1
3

16πGN(ρ+ p) R3 Yµ(r).

This is the exact solution for vorticity
on Uniform-Radial-Expansion Slices which are
spatially open.

I Resulting weight function W (r) in exact solution
normalized to unity⇔ exact rotational frame-dragging.


