Exact solution of Einstein's angular momentum constraint in the angular-momentum sector of matter on the past light cone:

Exact dragging of inertial axes by cosmic energy currents (Mach's principle)

Christoph Schmid, ETH Zurich

27th Texas Symposium on Relativistic Astrophysics December 8-13, 2013, Dallas, Texas

Inertial Axes \Leftrightarrow Spin Axes of Gyroscopes

- Experimentally spin axes of gyroscopes directly give time-evolution of local inertial axes: inertial guidance systems.

Inertial Axes \Leftrightarrow Spin Axes of Gyroscopes

- Experimentally spin axes of gyroscopes directly give time-evolution of local inertial axes: inertial guidance systems.
- Argument in opposite direction:

In the local inertial frame of a gyroscope: no gyroscope-precession.

Super-precise observational fact

- Spin-axes of gyroscopes do not rotate relative to quasars, except extremely small dragging effect by Earth rotation: Lense - Thirring effect, detected by Gravity Probe B.
- Gyros at a few Earth radii: Dragging by Earth negligible.

Mach's Principle: The Question

- WHAT PHYSICAL CAUSE: determines the time-evolution of gyroscope axes, i.e. the time-evolution of inertial axes ?

Mach's Principle: The Question

- WHAT PHYSICAL CAUSE: determines the time-evolution of gyroscope axes, i.e. the time-evolution of inertial axes ?
- John A. Wheeler: "Who gives the marching orders" to gyroscope axes (= inertial axes)?

The Postulate formulated by Mach

- Inertial axes exactly follow an average of the motion of cosmological masses: exact frame dragging.

The Postulate formulated by Mach

- Inertial axes exactly follow an average of the motion of cosmological masses: exact frame dragging.
- Newton's gravitational force: no torque on a gyroscope. Mach wrote: unknown, what new force could do the job. General Relativity: gravito-magnetism \Rightarrow Lense-Thirring.

The Postulate formulated by Mach

- Inertial axes exactly follow an average of the motion of cosmological masses: exact frame dragging.
- Newton's gravitational force: no torque on a gyroscope. Mach wrote: unknown, what new force could do the job. General Relativity: gravito-magnetism \Rightarrow Lense-Thirring.
- Mach did not know, what average of cosmological masses and their motions should be taken.

Mach's Principle: Our Results

- Our old results, published in Phys. Rev. 2006 and 2009:
exact dragging of inertial axes (Mach's Principle) for all linear perturbations on all FRW backgrounds.

Mach's Principle: Our Results

- Our old results, published in Phys. Rev. 2006 and 2009:
exact dragging of inertial axes (Mach's Principle) for all linear perturbations on all FRW backgrounds.
- Our new results, unpublished:

Exact angular momentum constraint equation for matter angular-momentum on past light-cone: EXACT Einstein equation: LINEAR ord. diff. eq.

Mach's postulate \Rightarrow LINEAR relation input, output.

Significance: Is rotation absolute or relative?

- LOCAL analysis in laboratory, solar system, galaxy:
- Analysis in solar system: Newton correct with

ABSOLUTE-UNAMBIGOUS non-rotating frame.

- General Relativity of solar system (e.g. perihelion shift): Local non-rotating frames: ABSOLUTE-UNAMBIGUOUS, Asymptotic nonrotating frame: observational input, theoretically:

ABSOLUTE-NO-CAUSE-input-by-hand
via spatial boundary condition,
GR in solar system is not a "Theory of Relativity".

Significance: Is rotation absolute or relative?

- L OCAL analysis in laboratory, solar system, galaxy:
- Analysis in solar system: Newton correct with ABSOLUTE-UNAMBIGOUS non-rotating frame.
- General Relativity of solar system (e.g. perihelion shift): Local non-rotating frames: ABSOLUTE-UNAMBIGUOUS, Asymptotic nonrotating frame: observational input, theoretically:

ABSOLUTE-NO-CAUSE-input-by-hand via spatial boundary condition,

GR in solar system is not a "Theory of Relativity".

- GLOBALCOSMOLOGICAL analysis:
- Local non-rotating system is nonrotating RELATIVE to average of cosmic matter:

Cosmological GR is a "Theory of Relativity".

NON-PERTURBATIVE cosmological geometry

- Spirit of Riemann normal coord. on arbitrary geometry.
- Observation event P_{0} : World-lines of photons observed give radial coordinate lines on past light-cone (LC).
- Observer at rest relative to asymptotic quasars \Leftrightarrow no dipole term in measured Hubble velocities.

NON-PERTURBATIVE cosmological geometry

- Spirit of Riemann normal coord. on arbitrary geometry.
- Observation event P_{0} : World-lines of photons observed give radial coordinate lines on past light-cone (LC).
- Observer at rest relative to asymptotic quasars \Leftrightarrow no dipole term in measured Hubble velocities.
- Minkowski corridor along photon world-line arriving at P_{0} : Local Minkowski Coordinate System at P_{0} extended along photon world-line gives spatial separation in frame of observer (astronomer's luminosity distance),
$P \Rightarrow$ coordinate r_{P} with $g_{r r}=1$.

NON-PERTURBATIVE cosmological geometry

- Spirit of Riemann normal coord. on arbitrary geometry.
- Observation event P_{0} : World-lines of photons observed give radial coordinate lines on past light-cone (LC).
- Observer at rest relative to asymptotic quasars \Leftrightarrow no dipole term in measured Hubble velocities.
- Minkowski corridor along photon world-line arriving at P_{0} : Local Minkowski Coordinate System at P_{0} extended along photon world-line gives spatial separation in frame of observer (astronomer's luminosity distance),
$P \Rightarrow$ coordinate r_{P} with $g_{r r}=1$.
- Choose polar quasar and zero-meridian quasar
$P \Rightarrow$ coordinates $\left(\theta_{P}, \phi_{P}\right)$.
- Equilateral triangles, infinitely narrow: two neighboring photon world-lines with equal spatial distances $r_{O P}=r_{O P^{\prime}}$ generate 2-spheres orthogonal to photon world-lines:

$$
g_{r \theta}=0, \quad g_{r \phi}=0
$$

Gyroscope precession
 \Rightarrow toroidal vorticity sector for cosmic matter flow

- Non-perturbative treatment. Exact fields.
- On one past light-cone: decomposition in 3-scalar, 3-vector, 3-tensor sectors rigorously valid.
- On one past light-cone: We neglect tensor sector.
- Scalar sector \Rightarrow no gyroscope-precession \Rightarrow neglect it.

Gyroscope precession
 \Rightarrow toroidal vorticity sector for cosmic matter flow

- Non-perturbative treatment. Exact fields.
- On one past light-cone: decomposition in 3-scalar, 3-vector, 3-tensor sectors rigorously valid.
- On one past light-cone: We neglect tensor sector.
- Scalar sector \Rightarrow no gyroscope-precession \Rightarrow neglect it.
- Gyroscope precession at P_{O} caused only by: vector sector (divergence-free) \equiv vorticity sector with $\boldsymbol{J}^{P}=1^{+} \Rightarrow$ toroidal vorticity, relative to P_{O}.
- focus on $m=0$. With $m= \pm 1$ following trivially.

Gyroscope precession
 \Rightarrow toroidal vorticity sector for cosmic matter flow

- Non-perturbative treatment. Exact fields.
- On one past light-cone: decomposition in 3-scalar, 3-vector, 3-tensor sectors rigorously valid.
- On one past light-cone: We neglect tensor sector.
- Scalar sector \Rightarrow no gyroscope-precession \Rightarrow neglect it.
- Gyroscope precession at P_{O} caused only by:
vector sector (divergence-free) \equiv vorticity sector with $J^{P}=1^{+} \Rightarrow$ toroidal vorticity, relative to P_{0}.
- focus on $m=0$. With $m= \pm 1$ following trivially.
- Vector spher. harmonics, toroidal sector:

$$
\left(V_{\ell=1, m=0}^{(P=+)}\right)^{\phi}=\text { constant }, \quad\left(V_{\ell=1, m=0}^{(P=+)}\right)^{\theta}=0
$$

give angular velocity of rigid rotation around \boldsymbol{z}-axis.

Light cones: Intrinsic geometry UNPERTURBED by strong toroidal vorticity

- Measure circumference C_{P} of 2 -sphere through P. For simplicity in this talk, assume that (C_{P} / r_{P}) $=2 \pi \Rightarrow$ measured light-cone indistinguishable from light cones in Minkowski and in spatially flat FRW.

Light cones: Intrinsic geometry UNPERTURBED by strong toroidal vorticity

- Measure circumference $\boldsymbol{C}_{\boldsymbol{P}}$ of 2-sphere through P. For simplicity in this talk, assume that (C_{P} / r_{P}) $=2 \pi \Rightarrow$ measured light-cone indistinguishable from light cones in Minkowski and in spatially flat FRW.
- Tensor spherical harmonics with toroidal vorticity,

$$
\left(T_{\ell=1, m=0}^{(P=+)}\right)_{\alpha \beta}=0
$$

Metric of 2-spheres must be unperturbed metric,

$$
g_{\theta \phi}=0, \quad g_{\theta \theta}=r^{2}, \quad g_{\phi \phi}=r^{2} \sin ^{2} \theta
$$

- INTRINSIC 3-GEOMETRY of every light-cone (LC) with ARBITRARY VORTICITY fields:
\Rightarrow EQUAL to UNPERTURBED intrinsic geometry of LC in Minkowski and LC in spatially flat FRW.

From one light cone to a neighbouring one: SHIFT

- Lapse function (elapsed measured time between slices at fixed χ) is unperturbed, because it is a 3-scalar.
- Only quantity referring to toroidal vorticity: shift-3-vector

$$
\ell=1, m=0: \quad \beta^{\phi} \equiv \beta(v, \chi), \quad \beta^{\theta}=0, \quad \beta^{\chi}=0
$$

From one light cone to a neighbouring one: SHIFT

- Lapse function (elapsed measured time between slices at fixed χ) is unperturbed, because it is a 3-scalar.
- Only quantity referring to toroidal vorticity: shift-3-vector

$$
\ell=1, m=0: \quad \beta^{\phi} \equiv \beta(v, \chi), \quad \beta^{\theta}=0, \quad \beta^{\chi}=0
$$

- Hubble $H(r)$ measured
comoving coordinate difference $\equiv d \chi \equiv a^{-1} d r$, at fixed comoving distance: measured time diff. $\equiv d t$, conformal time difference $\equiv d \eta \equiv a^{-1} d t$.
- Light-cone coordinates (v, χ, θ, ϕ) and metric:

$$
\begin{aligned}
v \equiv & \eta+\chi \quad \Rightarrow \quad v \text { labels past light-cone } \\
d s^{2}= & a^{2}\left[-d v^{2}+2 d v d \chi+\chi^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right. \\
& \left.+2 \beta_{\phi} \chi^{2} \sin ^{2} \theta d \phi d v\right]
\end{aligned}
$$

Exact angular momentum constraint for toroidal vorticity on past light-cone of observation

- Exact Einstein tensor for vorticity with $(\ell=1, m=0)$,

$$
\begin{aligned}
& 2 a^{4} G_{(1)}^{v \phi}= \\
& =\partial_{\chi}^{2} \beta+\left(\partial_{\chi} \beta\right)\left(4 \chi^{-1}-2 \mathcal{H}\right)+\beta\left(4 \mathcal{H}^{\prime}-4 \mathcal{H}^{2}\right)
\end{aligned}
$$

where $\mathcal{H} \equiv a^{-1}(d a / d \eta)$ and $\mathcal{H}^{\prime} \equiv(d \mathcal{H} / d \eta)$.

Exact angular momentum constraint for toroidal vorticity on past light-cone of observation

- Exact Einstein tensor for vorticity with $(\ell=1, m=0)$,

$$
\begin{aligned}
& 2 a^{4} G_{(1)}^{v \phi}= \\
& =\partial_{\chi}^{2} \beta+\left(\partial_{\chi} \beta\right)\left(4 \chi^{-1}-2 \mathcal{H}\right)+\beta\left(4 \mathcal{H}^{\prime}-4 \mathcal{H}^{2}\right)
\end{aligned}
$$

where $\mathcal{H} \equiv a^{-1}(d a / d \eta)$ and $\mathcal{H}^{\prime} \equiv(d \mathcal{H} / d \eta)$.

- Matter evolution: If p / ρ approximated time-independent, $a_{0} \equiv 1, \eta_{0} \equiv 1: \quad \boldsymbol{a}=\eta^{\boldsymbol{P}} \quad \Rightarrow \quad \mathcal{H}=\boldsymbol{P} \eta^{-1}$.
Equation for Green function away from δ-function shell,

$$
\begin{aligned}
& \partial_{\eta}^{2} \beta-\left(\partial_{\eta} \beta\right)\left[4(1-\eta)^{-1}-2 P \eta^{-1}\right] \\
& -4 \beta\left(P+P^{2}\right) \eta^{-2}=0
\end{aligned}
$$

from $\eta=0$ (big bang) to $\eta=1$ (observation): Singular points of regular type, solutions with algebraic singularities. Numerical solution of linear diff. eq. of 2nd order needed.

General Relativity \Rightarrow Gravitomagnetism

- Work on Uniform-Radial-Hubble-Expansion Slices
- Operational definitions via measurements by Fiducial Observers (FIDOs) at rest on slice with Local Ortho-Normal Bases (LONBs) denoted by hats.
- Op. Def. of gravitoelectric field $\overrightarrow{\boldsymbol{E}}_{\mathrm{g}} \equiv \overrightarrow{\boldsymbol{g}}$:

$$
\frac{d}{d t} p_{\hat{i}} \equiv m E_{\hat{i}}^{\mathrm{g}} \quad \text { free-falling quasistatic test particle, }
$$

- Op. Def. of gravitomagnetic field $\vec{B}_{\mathbf{g}}$:
$\Omega_{\hat{i}}^{\text {gyro }} \equiv-\frac{1}{2} B_{\hat{i}}^{\mathrm{g}} \quad$ precession of gyro comoving with FIDO.
- Gravitomagnetic vector potential $\vec{A}_{\mathrm{g}}: \quad \vec{B}_{\mathrm{g}}=\operatorname{curl} \vec{A}_{\mathrm{g}}$ it follows: $\overrightarrow{\boldsymbol{A}}_{\mathbf{g}}=\overrightarrow{\boldsymbol{\beta}} \equiv$ shift vector.

Einstein's $G_{\hat{k}}^{\hat{k}}$ Eq.: Angular Momentum Constraint

- NEW: Angular momentum constraints for Uniform-Radial-Expansion Slices are form-identical for slices which are spatially flat, hyperbolic, or spherical,

$$
\left(-\Delta+\mu^{2}\right) \vec{A}_{\mathrm{g}}=-16 \pi G_{\mathrm{N}} \vec{J}_{\varepsilon}
$$

$(\mu / 2)^{2} \equiv-(d H / d t) \equiv(H \text {-dot radius })^{-2}$,
$\vec{J}_{\varepsilon}=$ energy current density = momentum density

- NEW: Same as Ampère's law for stationary magnetism except $\mu^{2} \vec{A}_{\mathrm{g}} \Rightarrow$ Yukawa suppression (H-dot radius). Elliptic equation (no partial time-derivatives of perturbations) for time-dependent gravitomagnetism.

Einstein's $G_{\hat{k}}^{\hat{k}}$ Eq.: Angular Momentum Constraint

- NEW: Angular momentum constraints for Uniform-Radial-Expansion Slices are form-identical for slices which are spatially flat, hyperbolic, or spherical,

$$
\left(-\Delta+\mu^{2}\right) \vec{A}_{\mathrm{g}}=-16 \pi G_{\mathrm{N}} \vec{J}_{\varepsilon}
$$

$(\mu / 2)^{2} \equiv-(d H / d t) \equiv(H \text {-dot radius })^{-2}$,
$\vec{J}_{\varepsilon}=$ energy current density = momentum density

- NEW: Same as Ampère's law for stationary magnetism except $\mu^{2} \vec{A}_{\mathrm{g}} \Rightarrow$ Yukawa suppression (H-dot radius). Elliptic equation (no partial time-derivatives of perturbations) for time-dependent gravitomagnetism.
- NEW: $\overrightarrow{\boldsymbol{J}} \hat{\hat{\boldsymbol{k}}}, \boldsymbol{T}_{\hat{\boldsymbol{k}}}^{\hat{0}}$ is measurable input without prior knowledge of $g_{0 i}$, which is output. T_{k}^{0} not measurable.
- NEW in cosmology: Laplacian on Vector Fields in Riemannian 3-Spaces is de Rham - Hodge Laplacian.

Solution of the Angular Momentum Constraint

- Identical expressions for solutions of cosmological gravitomagnetism on Uniform-Radial-Expansion slices, which are spatially open,

$$
\begin{aligned}
\vec{B}_{\mathrm{g}}(P) & =-2 \vec{\Omega}_{\mathrm{gyro}}(P)= \\
& =-4 G_{\mathrm{N}} \int d\left(\operatorname{vol}_{Q}\right)\left[\vec{n}_{P Q} \times \vec{J}_{\varepsilon}(Q)\right] Y_{\mu}\left(r_{P Q}\right) \\
Y_{\mu}(r) & =\frac{-d}{d r}\left[\frac{1}{R} \exp (-\mu r)\right]=\text { Yukawa force }
\end{aligned}
$$

$r=$ radial distance, $2 \pi R=$ circumference of great circle.

- NEW: Solution form-invariant if one goes to rotating frame \Leftrightarrow Only relative motion of quasars and gyroscope spins is relevant.

Bottom Line: Exact Dragging of Inertial Axes Mach's Principle holds for Vorticity, strong or weak

- Inertial axes exactly follow the weighted average of cosmic energy currents (in all reference frames):

$$
\begin{gathered}
\vec{\Omega}_{\mathrm{gyro}}=\left\langle\vec{\Omega}_{\text {matter }}>\equiv \int_{0}^{\infty} d r \vec{\Omega}_{\text {matter }}(r) W(r)\right. \\
W(r)=\frac{1}{3} 16 \pi G_{\mathrm{N}}(\rho+p) R^{3} Y_{\mu}(r)
\end{gathered}
$$

This is the exact solution for vorticity on Uniform-Radial-Expansion Slices which are spatially open.

- Resulting weight function $\boldsymbol{W}(\boldsymbol{r})$ in exact solution normalized to unity \Leftrightarrow exact rotational frame-dragging.

