Cosmology in One Dimension:
 Correlation, Power Spectra and Void Geometry

B.N. Miller, J.L. Rouet

TCU, Université d'Orléans

Texas Symposium 2013

Model Assumptions

- Starting from matter fluctuations, the structure of the universe presents now a hierarchical structure
- We will use a toy model to follow its evolution after recombination and later, so Newtonian dynamics applies
- We restrict to 1D gravitating system
- And use an N-body description

System description $1 / 2$

- Equation of motion

$$
\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}=E(x, t)
$$

- Introducing Scaled Space and Time

$$
x=C(t) x^{\prime} \quad \mathrm{d} t=A^{2}(t) \mathrm{d} t^{\prime}
$$

with

$$
C(t)=\left(\alpha \omega_{J_{0}} t\right)^{2 / 3} \text { and } A^{2}(t)=\left(\alpha \omega_{J_{0}} t\right)
$$

- Transform the equation of motion

$$
\frac{\mathrm{d}^{2} x^{\prime}}{\mathrm{d} t^{\prime 2}}+\frac{1}{3} \alpha \omega_{J_{0}} \frac{\mathrm{~d} x^{\prime}}{\mathrm{d} t^{\prime}}-\frac{2}{9}\left(\alpha \omega_{J_{0}}\right)^{2} x^{\prime}=E^{\prime}\left(x^{\prime}, t^{\prime}\right)
$$

- The force proportional to x^{\prime} will be taken as given by a neutralizing background

System description $2 / 2$

■ Here, we consider a planar perturbation. So $i=1, N$ infinite plane sheets.

- For an initially 1-D planar problem we have

$$
\frac{\mathrm{d}^{2} x_{i}^{\prime \prime}}{\mathrm{d} t^{\prime 2}}+\frac{1}{\sqrt{2}} \omega_{J 0} \frac{\mathrm{~d} x_{i}^{\prime \prime}}{\mathrm{d} t^{\prime}}-\omega_{J 0}^{2} x_{i}^{\prime \prime}=E_{i}^{\prime \prime}
$$

- For an initially 1-D cylindrical problem we have

$$
\frac{\mathrm{d}^{2} x_{i}^{\prime \prime}}{\mathrm{d} t^{\prime 2}}+\frac{1}{2} \omega_{\mathrm{J} 0} \frac{\mathrm{~d} x_{i}^{\prime \prime}}{\mathrm{d} t^{\prime}}-\omega_{J 0}^{2} x_{i}^{\prime \prime}=E_{i}^{\prime \prime}
$$

- For an initially 1-D spherical problem we have

$$
\frac{\mathrm{d}^{2} x_{i}^{\prime \prime}}{\mathrm{d} t^{\prime 2}}+\frac{1}{6} \omega_{J 0} \frac{\mathrm{~d} x_{i}^{\prime \prime}}{\mathrm{d} t^{\prime}}-\omega_{J 0}^{2} x_{i}^{\prime \prime}=E_{i}^{\prime \prime}
$$

- The friction coefficient α depends on the initial system geometry
- System with periodic boundary conditions
\rightarrow periodic potential exactly solved

Periodic system

- For a single particle i, the potential $\phi_{i}(x)$ reads :

$$
\begin{aligned}
\phi_{i}(x) & =\frac{\sigma}{2}\left|x-x_{i}\right| \exp \left(-\kappa\left|x-x_{i}\right|\right) \\
& =-\frac{\sigma}{2} \frac{\mathrm{~d}}{\mathrm{~d} \kappa} \exp \left(-\kappa\left|x-x_{i}\right|\right)
\end{aligned}
$$

M. Kiessling : 2003, Adv. Appl. Math. 31

- For a periodic system of length $2 L$, taking into account all replica :

$$
\begin{aligned}
\phi_{i}(x) & =-\frac{\sigma}{2} \sum_{n} \frac{\mathrm{~d}}{\mathrm{~d} \kappa} \exp \left(-\kappa\left|x-\left(x_{i}-2 n L\right)\right|\right) \\
& \sim \frac{\sigma}{2}\left[\left|x-x_{i}\right| \exp \left(-\kappa\left|x-\left(x_{i}-2 n L\right)\right|\right)+\frac{1}{\kappa^{2} L}-\frac{1}{2}\left(x-x_{i}\right)^{2}\right]
\end{aligned}
$$

- Substracting the neutralizing background contribution is required to obtain a convergent potential

$$
\begin{aligned}
\phi_{B G}(x) & =-\int_{-\infty}^{\infty} \rho_{B G}\left(x^{\prime}\right)\left|x-x^{\prime}\right| \exp \left(-\kappa\left|x-x^{\prime}\right|\right) \mathrm{d} x^{\prime}=-\frac{\sigma}{2 \kappa^{2} L} \\
& \text { with } \rho_{B G}=-\frac{\sigma}{2 L} .
\end{aligned}
$$

Periodic system

- The total field for a single particle reads, taking $\kappa \rightarrow 0$

$$
E_{i}(x)=-\frac{\sigma}{2} \operatorname{sign}\left(x-x_{i}\right)+\frac{\sigma}{2 L}\left(x-x_{i}\right)
$$

- Summing over all particles, the field for x in the primitive cell reads

$$
E(x)=\sum_{i} E_{i}(x)=\frac{\sigma}{2}\left[N_{\text {right }}(x)-N_{\text {left }}(x)+\frac{N}{L}\left(x-x_{c}\right)\right]
$$

$x_{c}=\frac{1}{N} \sum_{i=1}^{N} x_{i}:$ center of mass, keeps the field constant when a particle leaves the system while another enters form the other side.
B.N. Miller and J.L. Rouet : 2010, PRE 82, 6

Periodic system : symmetry based derivation

- Poisson's equation for a single particle, background included :

$$
\frac{\mathrm{d} E_{i}}{\mathrm{~d} x}=-\sigma \delta\left(x-x_{i}\right)+\frac{\sigma}{2 L}
$$

- The general solution reads

$$
E_{i}(x)=-\sigma \Gamma\left(x-x_{i}\right)+\frac{\sigma}{2 L} x+C
$$

- Global neutrality on $\pm L$ gives $C=\frac{\sigma}{2}-\frac{\sigma}{2 L} x_{i}$
\Rightarrow So

$$
E_{i}(x)=-\frac{\sigma}{2} \operatorname{sign}\left(x-x_{i}\right)+\frac{\sigma}{2 L}\left(x-x_{i}\right)
$$

Periodic system : Polarized boundaries

- Another point of view is to write

$$
E_{i}=\frac{\sigma}{2}\left[N_{\text {right }}(x)-N_{\text {left }}(x)\right]+E_{B}
$$

where E_{B} is the boundary polarization field.

- Plasma case identical

Numerical Simulation: Initial Condition

- Importance of $\mathrm{P}(\mathrm{k})$ to characterize fluctuations
- Power law provides scale-free behavior of primordial Gaussian density fluctuations
- Particles are shifted from their equilibrium position in order to have $P(k) \sim k^{n}$
- Velocities are connected to the displacement according to the growing mode of the system (trajectories in phase space)
- Figures given for the RF-model and $n=3$
- The RF-model is a mathematicaly consistent 1D model
- $n=3$ is the most chaotic choice, corresponds to $n=1$ in 3D (J.A. Peacock, Cosmological Physics)
$P(k), n=3$ at $T=0$

$\rightarrow P(k) \sim k^{n}$ with $n=3$
- Require $n>0$ to obtain a hierarchical structure
- Simulation with $N=65535$ particles

A Simulation Result

Multifractal Analysis

- Box Counting Method

$$
B(I, q)=\frac{1}{N_{b o x}(I)} \sum_{i=1}^{N_{b o x}} \mu_{i}(I)^{q} \sim I^{\tau_{q}}
$$

- Correlation-Integral (or Point-Wise Dimension method)

$N C_{i}(I)$ number of particles at a distance I
- Density-reconstruction (or k-neighbor method)

$$
W\left(p, \tau_{q}\right)=\frac{1}{N} \sum R_{i}(p)^{-\tau_{q}} \sim p^{q-1}
$$

R_{i} contains $k=p N$ points

- $\tau_{q}=(q-1) D_{q}$ where D_{q} is the generalized dimension of order q.
- $q>0$ emphasizes high density region, $q<0$ emphasizes low density region
- D_{2} is the correlation dimension

Simulation results : Box counting

- A scaling range around $I=1$ thanks to the friction
- Two trivial scaling ranges
- for large I : the slope is 1 due to homogeneity
- for small I : the slope is 0 due to the discretzation (finite number of particles)

Simulation results : Box counting and Correlation-Integral

- Increasing curve!
- For $q \geq 0$ the curve decreases very slightly
- Similar results with Box counting and Correlation-Integral methods

Simulation results: Density-Reconstruction

$$
\mathrm{T}=16.0
$$

- Two scaling ranges
- The cutoff is increasing with time
- All curves gather for large k which correspond to homogeneity $15 / 20$

D_{q} : Comparison of the 3 methods

- D_{q} is Decreasing for the DR method
- Similar results with Box counting and Correlation-Integral method for $q>0$

τ_{q} : Comparison of the 3 methods

- $\tau_{q}=(q-1) D_{q}$
- The curve τ_{q} suggests a Bi-fractal
(R. Balian and R. Schaeffer : 1989, Astron. Astrophys. 226 1)

Correlation : Time evolution

- The slope n gives $D_{2}=1+n$

■ For $T=16 n=-.58$ for $D_{2}=.40$

Power spectrum evolution

Transition between linear and non-linear regime :
$k_{c}(t) \sim \exp \left(-r t /\left(n_{l}-n\right)\right)$

$$
\text { with } r=\gamma\left(-1+\sqrt{1+4 / \gamma^{2}}\right)
$$

B.N. Miller, J.L. Rouet : 2010, Phys Rev E 82 6, B.N. Miller, J.L. Rouet : 2010, JSTAT, P12028

Conclusion

- A 1D toy model including expansion and gravitation
- 1D models allow
- to use the gravitational field without cutoff
- to deal with a high number of particles (here 65535)
- Show a hierachical formation structure in μ-space
- The analysis is performed on the projection in configuration space
- Using large data sets, robust scaling regimes are observed for both low and high density region
- The apparent fractality that arises in observations is a projection from six dimensions
- Share similar fractal properties with observations and 3D simulations (apparent bifractal geometry)
- This remains true for other models (changing the friction coefficient) and other Initial Conditions
- The time evolution of the scalings (power spectrum, correlation) are consistant with universe observations

