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Model Assumptions

Starting from matter fluctuations, the structure of the universe
presents now a hierarchical structure

We will use a toy model to follow its evolution after recombination
and later, so Newtonian dynamics applies

We restrict to 1D gravitating system

And use an N-body description



System description 1/2

Equation of motion
d2x

dt2
= E (x , t)

Introducing Scaled Space and Time

x = C (t)x ′ dt = A2(t)dt ′

with
C (t) = (αωJ0t)2/3 and A2(t) = (αωJ0t)

Transform the equation of motion

d2x ′

dt ′2
+

1

3
αωJ0

dx ′

dt ′
− 2

9
(αωJ0)2x ′ = E ′(x ′, t ′)

The force proportional to x ′ will be taken as given by a neutralizing
background
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System description 2/2
Here, we consider a planar perturbation. So i = 1,N infinite plane
sheets.

For an initially 1-D planar problem we have

d2x ′′i
dt ′2

+
1√
2
ωJ0

dx ′′i
dt ′
− ω2

J0x
′′
i = E ′′i

For an initially 1-D cylindrical problem we have

d2x ′′i
dt ′2

+
1

2
ωJ0

dx ′′i
dt ′
− ω2

J0x
′′
i = E ′′i

For an initially 1-D spherical problem we have

d2x ′′i
dt ′2

+
1

6
ωJ0

dx ′′i
dt ′
− ω2

J0x
′′
i = E ′′i

The friction coefficient α depends on the initial system geometry

System with periodic boundary conditions
→ periodic potential exactly solved
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Periodic system

i

φ
i(x)

xx

For a single particle i , the potential φi (x) reads :

φi (x) =
σ

2
|x − xi | exp(−κ|x − xi |)

= −σ
2

d

dκ
exp(−κ|x − xi |)

M. Kiessling : 2003, Adv. Appl. Math. 31

For a periodic system of length 2L, taking into account all replica :

φi (x) = −σ
2

∑
n

d

dκ
exp(−κ|x − (xi − 2nL)|)

∼ σ

2

[
|x − xi | exp(−κ|x − (xi − 2nL)|) +

1

κ2L
− 1

2
(x − xi )

2

]
Substracting the neutralizing background contribution is required to
obtain a convergent potential

φBG (x) = −
∫ ∞
−∞

ρBG (x ′) |x − x ′| exp(−κ|x − x ′|)dx ′ = − σ

2κ2L

with ρBG = − σ
2L .
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Periodic system
i

xi

x −Li x +Li

L−L 0

x

E (x) The total field for a single particle reads,
taking κ→ 0

Ei (x) = −σ
2
sign(x − xi ) +

σ

2L
(x − xi )

Summing over all particles, the field for x in the primitive cell reads

E (x) =
∑
i

Ei (x) =
σ

2

[
Nright(x)− Nleft(x) +

N

L
(x − xc)

]

xc = 1
N

∑N
i=1 xi : center of mass, keeps the field constant when a

particle leaves the system while another enters form the other side.

B.N. Miller and J.L. Rouet : 2010, PRE 82, 6
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Periodic system : symmetry based derivation

Poisson’s equation for a single particle, background included :

dEi

dx
= −σ δ(x − xi ) +

σ

2L

The general solution reads

Ei (x) = −σ Γ(x − xi ) +
σ

2L
x + C

Global neutrality on ±L gives C = σ
2 −

σ
2L xi

⇒ So
Ei (x) = −σ

2
sign(x − xi ) +

σ

2L
(x − xi )
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Periodic system : Polarized boundaries
Another point of view is to write

Ei =
σ

2
[Nright(x)− Nleft(x)] + EB

where EB is the boundary polarization field.

c

σ
σ

a b c

−L L

σ

a b

−L L

σ

c

−L L

a b

−L L Par-

ticle c goes out from right and enters left
σ

2

[
Nright (x) − Nleft (x)

]
EB

Plasma case identical
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Numerical Simulation : Initial Condition

Importance of P(k) to characterize fluctuations

Power law provides scale-free behavior of primordial Gaussian
density fluctuations

Particles are shifted from their equilibrium position in order to have
P(k) ∼ kn

Velocities are connected to the displacement according to the
growing mode of the system (trajectories in phase space)

Figures given for the RF-model and n = 3

The RF-model is a mathematicaly consistent 1D model
n = 3 is the most chaotic choice, corresponds to n = 1 in 3D
(J.A. Peacock, Cosmological Physics)
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P(k), n = 3 at T = 0

→ P(k) ∼ kn with n = 3

Require n > 0 to obtain a hierarchical structure

Simulation with N = 65535 particles
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A Simulation Result
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Multifractal Analysis
Box Counting Method

ii iµ

−L Ll

=N /Nbox

B(l , q) =
1

Nbox(l)

Nbox∑
i=1

µi (l)
q ∼ lτq

Correlation-Integral (or Point-Wise Dimension method)
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�� Z (l , q) =

1

N

∑
Ci (l)

q−1 ∼ lτq

NCi (l) number of particles at a distance l

Density-reconstruction (or k-neighbor method)

k=6 neighbors
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W (p, τq) =
1

N

∑
Ri (p)−τq ∼ pq−1

Ri contains k = pN points

τq = (q − 1)Dq where Dq is the generalized dimension of order q.

q > 0 emphasizes high density region, q < 0 emphasizes low density
region

D2 is the correlation dimension
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Simulation results : Box counting
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A scaling range around l = 1 thanks to the friction

Two trivial scaling ranges

for large l : the slope is 1 due to homogeneity
for small l : the slope is 0 due to the discretzation (finite
number of particles)
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Simulation results : Box counting and Correlation-Integral
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Increasing curve !

For q ≥ 0 the curve decreases very slightly

Similar results with Box counting and Correlation-Integral methods
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Simulation results : Density-Reconstruction

Two scaling ranges

The cutoff is increasing with time

All curves gather for large k which correspond to homogeneity
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Dq : Comparison of the 3 methods
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Similar results with Box counting and Correlation-Integral method
for q > 0
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τq : Comparison of the 3 methods
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The curve τq suggests a Bi-fractal
(R. Balian and R. Schaeffer : 1989, Astron. Astrophys. 226 1)
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Correlation : Time evolution

The slope n gives D2 = 1 + n

For T = 16 n = −.58 for D2 = .40
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Power spectrum evolution

Transition between linear and non-linear regime :
kc(t) ∼ exp(−rt/(nl − n))

with r = γ(−1 +
√

1 + 4/γ2)

B.N. Miller, J.L. Rouet : 2010, Phys Rev E 82 6, B.N. Miller, J.L. Rouet : 2010, JSTAT, P12028
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Conclusion

A 1D toy model including expansion and gravitation

1D models allow

to use the gravitational field without cutoff
to deal with a high number of particles (here 65535)

Show a hierachical formation structure in µ-space

The analysis is performed on the projection in configuration space

Using large data sets, robust scaling regimes are observed for both
low and high density region

The apparent fractality that arises in observations is a projection
from six dimensions

Share similar fractal properties with observations and 3D
simulations (apparent bifractal geometry)

This remains true for other models (changing the friction
coefficient) and other Initial Conditions

The time evolution of the scalings (power spectrum, correlation) are
consistant with universe observations
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