Cosmology in One Dimension: Correlation, Power Spectra and Void Geometry

B.N. Miller, J.L. Rouet

TCU, Université d'Orléans

Texas Symposium 2013

Model Assumptions

- Starting from matter fluctuations, the structure of the universe presents now a hierarchical structure
- We will use a toy model to follow its evolution after recombination and later, so Newtonian dynamics applies
- We restrict to 1D gravitating system
- And use an *N*-body description

System description 1/2

Equation of motion

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = E(x,t)$$

Introducing Scaled Space and Time

$$x = C(t)x'$$
 $\mathrm{d}t = A^2(t)\mathrm{d}t'$

with

$$C(t) = (lpha \omega_{J0} t)^{2/3}$$
 and $A^2(t) = (lpha \omega_{J0} t)$

Transform the equation of motion

$$\frac{\mathrm{d}^2 x'}{\mathrm{d}t'^2} + \frac{1}{3} \alpha \omega_{J0} \frac{\mathrm{d}x'}{\mathrm{d}t'} - \frac{2}{9} (\alpha \omega_{J0})^2 x' = E'(x',t')$$

The force proportional to x' will be taken as given by a neutralizing background

System description 2/2

- Here, we consider a planar perturbation. So *i* = 1, *N* infinite plane sheets.
- For an initially 1-D planar problem we have

$$\frac{\mathrm{d}^2 x_i''}{\mathrm{d}t'^2} + \frac{1}{\sqrt{2}} \omega_{J0} \frac{\mathrm{d}x_i''}{\mathrm{d}t'} - \omega_{J0}^2 x_i'' = E_i''$$

■ For an initially 1-D cylindrical problem we have

$$\frac{\mathrm{d}^2 x_i^{\prime\prime}}{\mathrm{d}t^{\prime 2}} + \frac{1}{2} \omega_{J0} \frac{\mathrm{d}x_i^{\prime\prime}}{\mathrm{d}t^\prime} - \omega_{J0}^2 x_i^{\prime\prime} = E_i^{\prime\prime}$$

■ For an initially 1-D spherical problem we have

$$\frac{\mathrm{d}^2 x_i''}{\mathrm{d}t'^2} + \frac{1}{6} \omega_{J0} \frac{\mathrm{d}x_i''}{\mathrm{d}t'} - \omega_{J0}^2 x_i'' = E_i''$$

- \blacksquare The friction coefficient α depends on the initial system geometry
- System with periodic boundary conditions → periodic potential exactly solved

Periodic system

• For a single particle *i*, the potential $\phi_i(x)$ reads :

$$\phi_i(x) = \frac{\sigma}{2} |x - x_i| \exp(-\kappa |x - x_i|)$$
$$= -\frac{\sigma}{2} \frac{\mathrm{d}}{\mathrm{d}\kappa} \exp(-\kappa |x - x_i|)$$

M. Kiessling : 2003, Adv. Appl. Math. 31

■ For a periodic system of length 2*L*, taking into account all replica :

$$\phi_i(x) = -\frac{\sigma}{2} \sum_n \frac{\mathrm{d}}{\mathrm{d}\kappa} \exp(-\kappa |x - (x_i - 2nL)|)$$

$$\sim \frac{\sigma}{2} \left[|x - x_i| \exp(-\kappa |x - (x_i - 2nL)|) + \frac{1}{\kappa^2 L} - \frac{1}{2} (x - x_i)^2 \right]$$

 Substracting the neutralizing background contribution is required to obtain a convergent potential

$$\phi_{BG}(x) = -\int_{-\infty}^{\infty} \rho_{BG}(x') |x - x'| \exp(-\kappa |x - x'|) dx' = -\frac{\sigma}{2\kappa^2 L}$$

with $\rho_{BG} = -\frac{\sigma}{2L}$.

Periodic system

• The total field for a single particle reads, taking $\kappa \to 0$

$$E_i(x) = -\frac{\sigma}{2} \operatorname{sign}(x - x_i) + \frac{\sigma}{2L} (x - x_i)$$

■ Summing over all particles, the field for x in the primitive cell reads

$$E(x) = \sum_{i} E_{i}(x) = \frac{\sigma}{2} \left[N_{right}(x) - N_{left}(x) + \frac{N}{L}(x - x_{c}) \right]$$

 $x_c = \frac{1}{N} \sum_{i=1}^{N} x_i$: center of mass, keeps the field constant when a particle leaves the system while another enters form the other side.

B.N. Miller and J.L. Rouet : 2010, PRE 82, 6

Periodic system : symmetry based derivation

Poisson's equation for a single particle, background included :

$$\frac{\mathrm{d}E_i}{\mathrm{d}x} = -\sigma\,\delta(x-x_i) + \frac{\sigma}{2L}$$

The general solution reads

$$E_i(x) = -\sigma \Gamma(x - x_i) + \frac{\sigma}{2L}x + C$$

Global neutrality on $\pm L$ gives $C = \frac{\sigma}{2} - \frac{\sigma}{2L} x_i$ \Rightarrow So $F_i(x) = -\frac{\sigma}{2} \operatorname{sign}(x - x_i) + \frac{\sigma}{2L} (x - x_i)$

$$E_i(x) = -\frac{\sigma}{2}\mathrm{sign}(x-x_i) + \frac{\sigma}{2L}(x-x_i)$$

Periodic system : Polarized boundaries

Another point of view is to write

$$E_i = rac{\sigma}{2} \left[N_{right}(x) - N_{left}(x)
ight] + E_B$$

where E_B is the boundary polarization field.

Plasma case identical

Numerical Simulation : Initial Condition

- Importance of P(k) to characterize fluctuations
- Power law provides scale-free behavior of primordial Gaussian density fluctuations
- Particles are shifted from their equilibrium position in order to have $P(k) \sim k^n$
- Velocities are connected to the displacement according to the growing mode of the system (trajectories in phase space)
- Figures given for the RF-model and n = 3
 - The RF-model is a mathematicaly consistent 1D model
 - n = 3 is the most chaotic choice, corresponds to n = 1 in 3D (J.A. Peacock, Cosmological Physics)

P(k), n = 3 at T = 0

- $\rightarrow P(k) \sim k^n$ with n = 3
 - Require n > 0 to obtain a hierarchical structure
 - Simulation with N = 65535 particles

A Simulation Result

Multifractal Analysis

Box Counting Method

■ Correlation-Integral (or Point-Wise Dimension method)

$$Z(l,q) = \frac{1}{N} \sum C_i(l)^{q-1} \sim l^{\tau_q}$$

 $NC_i(I)$ number of particles at a distance I

■ Density-reconstruction (or *k*-neighbor method)

$$W(p, \tau_q) = \frac{1}{N} \sum_{\substack{K_i(p) \\ r_q \\$$

- $\tau_q = (q-1) D_q$ where D_q is the generalized dimension of order q.
- *q* > 0 emphasizes high density region, *q* < 0 emphasizes low density region
- D_2 is the correlation dimension

Simulation results : Box counting

- A scaling range around l = 1 thanks to the friction
- Two trivial scaling ranges
 - for large / : the slope is 1 due to homogeneity
 - for small / : the slope is 0 due to the discretzation (finite number of particles)

Simulation results : Box counting and Correlation-Integral

- Increasing curve !
- For $q \ge 0$ the curve decreases very slightly
- Similar results with Box counting and Correlation-Integral methods

Simulation results : Density-Reconstruction T = 16.0

Two scaling ranges

- The cutoff is increasing with time
- All curves gather for large k which correspond to homogeneity 15 / 20

D_q : Comparison of the 3 methods

• D_q is Decreasing for the DR method

• Similar results with Box counting and Correlation-Integral method for q > 0

τ_q : Comparison of the 3 methods

 $\bullet \ \tau_q = (q-1) D_q$

The curve τ_q suggests a Bi-fractal
 (R. Balian and R. Schaeffer : 1989, Astron. Astrophys. 226 1)

Correlation : Time evolution

• The slope n gives $D_2 = 1 + n$

• For
$$T = 16$$
 $n = -.58$ for $D_2 = .40$

Power spectrum evolution

Transition between linear and non-linear regime : $k_c(t) \sim \exp(-rt/(n_l - n))$

with
$$r = \gamma(-1 + \sqrt{1 + 4/\gamma^2})$$

B.N. Miller, J.L. Rouet : 2010, Phys Rev E 82 6, B.N. Miller, J.L. Rouet : 2010, JSTAT, P12028

Conclusion

- A 1D toy model including expansion and gravitation
- 1D models allow
 - to use the gravitational field without cutoff
 - to deal with a high number of particles (here 65535)
- \blacksquare Show a hierarchical formation structure in $\mu\text{-space}$
- The analysis is performed on the projection in configuration space
- Using large data sets, robust scaling regimes are observed for both low and high density region
- The apparent fractality that arises in observations is a projection from six dimensions
- Share similar fractal properties with observations and 3D simulations (apparent bifractal geometry)
- This remains true for other models (changing the friction coefficient) and other Initial Conditions
- The time evolution of the scalings (power spectrum, correlation) are consistant with universe observations