

Real-space density profile reconstruction of stacked voids XXVII Texas Symposium on Relativistic Astrophysics

Alice Pisani In collaboration with: B. D. Wandelt, P. M. Sutter, G. Lavaux Institut d'Astrophysique de Paris (France)

Dallas,TX 10/12/2013 Credit: Millennium simulation

The standard cosmological model

The standard cosmological model

The standard cosmological model

The study of large scale structures is a powerful tool to understand the composition of the universe.

2/12

Alcock-Paczyński test

The test uses the apparent stretching of spheres in the redshift space coordinates to estimate the local geometry of expansion by comparing the angular size to the radial/redshift size that is affected by cosmology.

Alcock-Paczyński test

The test uses the apparent stretching of spheres in the redshift space coordinates to estimate the local geometry of expansion by comparing the angular size to the radial/redshift size that is affected by cosmology.

Voids: Dark Energy-dominated objects

Voids: Dark **Energy-dominated** objects

universe accelerated expansion

The method to get the spherical profile

We can obtain the SPHERICAL density profile of stacked voids in real space.

but ill-conditioned!

0

0

0.2

0.6

0.4

r_v

0.8

1

The full simulated stacked void

Stacking from 10 to 12 Mpc/h

Simulated void from G. Lavaux

The full simulated stacked void

Stacking from 10 to 12 Mpc/h

Simulated void from G. Lavaux

REAL DATA from SDSS!!!

Dim 2 (5-15 Mpc/h)

arXiv:1306.3052 (A. Pisani, G.Lavaux, P. M. Sutter, B. D. Wandelt 2013)

What can Cosmic Voids constrain?

Modified Gravity

Dark Energy

Neurinos

Lambda-CDM

Acceleration of the universe expansion

What can Cosmic Voids constrain?

Modified Gravity

Dark Energy

Neurinos

Acceleration

of the universe

expansion

Lambda-CDM

EUCLID $5.0\cdot 10^7$ galaxies $z\simeq 1.5$

EUCLID $5.0\cdot 10^7 \text{ galaxies } z\simeq 1.5$

$\frac{\text{WFIRST}}{2.0 \cdot 10^7}$

EUCLID $5.0 \cdot 10^7$ galaxies $z \simeq 1.5$

$\frac{\text{WFIRST}}{2.0 \cdot 10^7}$

SDSS DR7 $1.5 \cdot 10^{6}$

EUCLID $5.0 \cdot 10^7$ galaxies $z \simeq 1.5$

WFIRST

 $2.0 \cdot 10^{7}$

SDSS DR7 $1.5 \cdot 10^{6}$

David Spergel's talk

EUCLID $5.0 \cdot 10^7$ galaxies $z \simeq 1.5$ WFIRST David Spergel's talk

SDSS DR7 $1.5 \cdot 10^{6}$

Real-space density void profiles of increased precision!

 $2.0 \cdot 10^{7}$

Conclusion

Algorithm for density profile reconstruction.

Tested on toy model, simulations.
 Successfully applied on real voids, first density profiles in real space!

Knowledge about voids: the way to measure the Hubble constant and test cosmological models.

Conclusion

Algorithm for density profile reconstruction.

 Tested on toy model, simulations.
 Successfully applied on real voids, first density profiles in real space!

Knowledge about voids: the way to measure the Hubble constant and test cosmological models.

Thank you!

The VIDE void finder

- Based on Zobov (Neyrinck 2008)
 Voronoi tessellation+watershed transform: it computes and locates local minima in the density field sampled by particles, then
 Each basin is a void, 2 basins in one void if they share a common boundary (density in boundary is the lowest)
- No overlapping, center in average lowest density (volume weighted barycenter)
- Takes into account survey boundaries and masks

Voids

Alcock-Paczyński test

The deviations from fiducial cosmology cause geometrical distortions.

 $\delta r_{\perp} = D_A(z)\delta\Theta$ comoving line of sight distance $\delta r_{\parallel} = cH^{-1}(z)\delta z$ projected angular extent

where

$$D_A = c \int_0^z H^{-1}(z') dz' \qquad H(z) = H_0 \sqrt{\Omega_m (1+z)^3 + \Omega_\Lambda}$$