Direct Measurement of H₀: Current Status and Future Prospects

Wendy Freedman Carnegie Observatories December 10, 2013 Texas Symposium Dallas 50 Year Jubilee

H₀ Over Time

H0 data compiled by J. Huchra and C. Booth http://www.craigmbooth.com/hubble/

Cosmic Microwave Background Anisotropies

Planck + WMAP9 + ACT + SPT

<u>Cosmological</u> <u>Parameters (Ade et al.)</u>

 $H_{0} = 67.3 \pm 1.2 \text{ km/s/Mpc}^{*}$ $\Omega_{M} = 0.315 \pm 0.017$ $\Omega_{DE} = 0.686 \pm 0.020$ $n_{s} = 0.9603 \pm 0.0074$ $W = -1.13_{-0.10}^{+0.13}$ ** model-dependent

Ade et al (2013); Hinshaw et al (2013)

Implications of Planck Results for H₀

General Remarks:

- A 6-parameter model provides an exquisite fit to the Planck data
- However, the value of H₀ must be derived assuming this model
- Direct measurements of H₀ are essential to test the model
- The key element is understanding the systematics affecting the accuracy of all of these measurements
- Given that Planck is measuring the universe at early times, and the direct H_0 measurements are being made at z~0 with completely independent techniques, underlying physics, etc., the 2-2.5- σ agreement is rather remarkable
- 2-2.5-σ discrepancies are not interesting for claiming new physics

Implications of Planck Results for H₀

Why Do We Need a More Accurate Value of H₀?

Recent Direct Measurements of H₀

- SH₀ES (Riess et al. 2011) : H₀ = 73.9 ± 2.4 km s⁻¹ Mpc⁻¹
- Carnegie Hubble Project: H_o = 74.3 ± 1.5 [stat] ± 2.1 [sys] km s⁻¹ Mpc⁻¹ (WLF et al. 2012)
- Carnegie supernovae: H_o = 72.7 ± 2.0 [stat] ± 0.5 [sys] km s⁻¹ Mpc⁻¹ H_o = 70.4 (NGC 4258 alone – new maser distance) (WLF et al. 2014, in progress)

The Carnegie Hubble Program (CHP) ****

The Carnegie Supernova Project (CSP) *** The Carnegie RR Lyrae Project (CRRP) ***

Barry, Vicky, Andy, Chris, Mark S., Eric, Mark P, Jeff

Spitzer LMC Cepheid Data

Scowcroft et al. 2012

Spitzer 3.6 and 4.5 µm Milky Way light curves

Monson et al. 2012

Near- and Mid-IR LMC PL (Leavitt) Relations

Sensitivity to [Fe/H]

LMC + MW Metallicity Calibration

WLF et al. (2012)

- Spectroscopic [Fe/H] from Romanielli et al. (2008)
- Most sensitive and direct test yet of metallicity effects
- LMC and Milky Way
- Wesenheit function
 W = V R (V-I) also
 very insensitive to
 metallicity

Comparison of LMC and Milky Way Leavitt Laws

WLF et al. (2012)

WLF et ål. (2014)

Carnegie Supernova Project (CSP)

Swope 1-meter

Dupont 2.5-meter

Magellan 6.5-meter

High z:

Low z:

•u'BVg'r'i'<u>YJHK</u> photometry• 2.5-meter spectroscopy

- YJ photometry
- Magellan 6.5-meter

i-band Hubble Diagram

i⁻band Hubble Diagram

CSP data:

First I-band Hubble Diagram at z > 0.07

WLF et al. (2009) Folatelli et al. (2010) Burns et al. (2011)

H₀ From Enlarged Sample of Type Ia Supernovae

Data for H₀ analysis:

- 9 Cepheid SN Ia hosts *
- 61 CSP SNe Ia *
- 155 CfA + CTIO SNe Ia *
- Total: 215 objects with z>0.01

WLF et al. (2014)

H₀ From Enlarged Sample of Type Ia Supernovae

MCMC analysis Solve for:

H₀, LMC, NGC 4258 distances Cepheid PL parameters, reddenings, metallicity dependence Supernova light curve parameters, calibrator distances, z_{CMB}

 $H_0 = 72.7 \pm 2.0 \text{ [stat]} \pm 0.5 \text{ [sys] km s}^{-1} \text{ Mpc}$ ($H_0 = 70.4 \text{ based on NGC 4258 alone}$)

Uncertainty in Type Ia Supernovae Calibrators

•Largest uncertainty: small number of calibrators

•Dashed lines show \pm 0.18 mag, the SNIa dispersion in the far sample.

- For the calibrators, $\sigma \sim 0.14$ mag
- Error on mean for the 9 calibrators is 0.046 mag or 2.3% in H₀
- **Challenge for 1%H₀ : only 9 calibrators
- Nature delivers new one only every 2-3 years!

Scatter in the Calibrating Galaxies

LMC $\sigma = \pm 0.10$ mag Scowcroft et al. 2012

NGC 4258 $\sigma = \pm 0.45$ mag Riess et al. 2011 Upcoming Improvements in H₀ Determinations

1. RR Lyrae Stars

Note $\sigma = 0.03$ mag! (1.5% in distance for single star!)

Madore et al. 2013

Spitzer Milky Way RR Lyrae Calibrators

3.6 and 4.5 μm Scowcroft et al (2013)

+ 10 – inch!

+ Gaia

New Multi-Color RR Lyrae PL Relations

A. Monson et al.

What can you address with accuracies this high?

- Structure of the bulge and halo of the Milky Way
- Stellar ages (globular clusters)
- Comparison with Cepheid distances
- Independent calibration of H₀ via TRGB and SNe

2. Future Parallax Measurements ESA's Global Astrometric Interferometer for Astrophysics (Gaia)

- Currently planned launch: Dec. 19, 2013
- A few microsecond accuracy
- Systematic survey of entire sky to 20 mag
- $\sigma_{\pi} / \pi < 1\%$ out to several kiloparsecs

- Accurate measurements of many Cepheids and RR Lyrae variables (~100's of Cepheids; 1000's of RR Lyraes) [~70 observations per object] + Spitzer
- Distance to LMC to 0.02-0.04 mag (1-2% in distances)

Expected relative accuracy in the distance of Galactic Cepheids from Gaia.

Decreasing the Uncertainties in H₀

[±10%]

HST Key Project:

- Several methods with independent checks
- 5% statistical uncertainties
- Robust tests of 10% final uncertainty
 - Cepheids (RR Lyraes, TRGB, PNLF)
 - SNeIa, TF, SBF, PNLF, SNII

Current H_0 Measurements: [±3-4%]

- Require additional tests to confirm Cepheid and SNeIa distances at the 3-4% level.
- Not yet available, but in progress.

Future H₀ Measurements:

- Spitzer RR Lyrae independent distances (2% level)**
- Gaia parallaxes (<1%) for Cepheids and RR Lyraes.

 $[\pm 2-3\%]$

- IR measurements of SNeIa
- Gravitational lensing, masers, Planck SZ clusters
- What is needed for H_0 to 1%?
 - Several independent methods capable of 1%

Advances in Measurements of H_o

Current status:

Freedman et al. (2012, 2013) LMC + Milky Way:

- high spatial resolution
- 0.1-0.2 mag scatter in Leavitt Law
- Spitzer 3.6 µm calibration + optical HST
- Fe/H spectroscopic abundance test

 $H_o = 74.3 \pm 1.5 \pm 2.1$ km s⁻¹ Mpc⁻¹ (recalibration of KP)

 $H_{o} = 72.7 \pm 2.0 \text{ [stat]} \pm 0.5 \text{ [sys] km s}^{-1} \text{ Mpc}^{-1}$ (CSP + CfA + SHOES + 2011fe) (Cepheids + SNe only) 0.5 mag scatter at H-band; LMC+MW+N4258

Riess et al. (2011) LMC+Milky Way + N4258:

- HST optical plus H-band
- 0.5 mag scatter at H-band

 $H_o = 73.9 \pm 2.4 \text{ km s}^{-1} \text{ Mpc}^{-1}$

MCMC histogram: Results for H₀

 $H_0 = 72.7 \pm 2.5$ km s⁻¹ Mpc⁻¹ [1 - σ standard deviation from MCMC chains]

 $H_0 = 72.7 \pm 2.0 \text{ [stat]} \pm 0.5 \text{ [sys]}$ km s ⁻¹ Mpc ⁻¹

• LMC, N4258 + photometric zp Independent systematics; i.e., not determined from data in hand.

All other parameters are nuisance parameters determined from the data