GR Precession and Debris Circularization in TDEs

NICHOLAS STONE – COLUMBIA UNIVERSITY

- 12/10/13 - UT DALLAS -

HAYASAKI, STONE & LOEB 2013

STONE, HAYASAKI & LOEB (IN PREP.)

Tidal Disruption of Stars

- Laboratory for accretion/ jet astrophysics
 - Super-Eddington flows
 - Jet launching mechanisms
- Unique probe of quiescent galactic nuclei
 - SMBH mass, spin from *lightcurve, SED*
 - Stellar dynamics from *rate*, *inferred pericenter*

(Wikimedia Commons)

Tidal Disruption Basics

- Tidal radius: $R_t = R_* \sqrt[3]{M_{BH}} / M_*$
- Only SMBHs with $\rm M_{BH}{<}10^8~M_{\odot}$ can disrupt solar-type stars

• Unless the SMBH is spinning rapidly (Kesden 11)

- Strength of tidal encounter defined by penetration factor β=R_t/R_p
 1<β<47 for SMBHs; equivalently 1<R_p/R_g<47
- Lightcurve often assumed to follow: L ∝ M ∝ t^{-5/3}
 At early times, numerical models for dM/dt necessary (Lodato+09, Guillochon & Ramirez-Ruiz 13)
 - o dM/dt encodes stellar parameters

Circularization of Tidal Debris

- Has not been simulated for e=1 TDEs around SMBHs
 Critical for understanding early phase of light curve
- Two hypothesized shock formation mechanisms:
- Nozzle at pericenter (vertical shocks)
 - Seen in e=1 star-IMBH TDEs (Ramirez-Ruiz & Rosswog 09, Guillochon+13)
- Relativistic precession, debris stream self-intersection (Rees 88)
 - o Semi-analytic model Kochanek 94
 - Seen in e=0.8 star-SMBH SPH simulations (Hayasaki, Stone & Loeb 13)

Physical Picture: Schwarzschild SMBH

- Apsidal precession causes stream self-intersection at R_{si}
- Large angle shocks occur unless intersection R_{si}≈R_{apo}

(Stone, Hayasaki & Loeb in prep)

Physical Picture: Kerr SMBH

- Misaligned SMBH spin χ_{BH} breaks orbital plane symmetry
- Lense-Thirring torques cause nodal precession of orbital plane
- Debris streams miss each other; shocks prevented

(Stone, Hayasaki & Loeb in prep)

Analytic Treatment: Schwarzschild

 Impulsive PN approximation: all precession at pericenter

$$\delta \omega = \frac{6\pi}{c^2} \frac{GM_{BH}}{a(1-e^2)}$$
$$\approx 11.5^{\circ} \left(\frac{\tilde{R}_p}{47}\right)^{-1}$$

• Self-intersection occurs at $\pi \pm \delta \omega/2$

(Stone, Hayasaki & Loeb in prep) 20 R_{si} -20δω $^{\prime}2$ y/R_g -60 1PN -80-100 -80-60 -20-4020 -1000 40 \mathbf{X}/R_g

GR versus Hydrodynamic Effective Precession

• Hydrodynamic "precession" competitive for IMBHs

Delays Due to Lense-Thirring Precession

• Height-normalized misalignment δz : sensitive to β

Conclusions

- Rising phase of light curve controlled by both dM/dt and circularization
 - Complicates extraction of stellar structure parameters
- GR precession may produce eccentric disks • $\beta = 1, M_{BH} < 10^{6} M_{\odot}$ unlikely to efficiently circularize
- GR precession dominates hydrodynamic "precession" for M_{BH} >10⁵ M_{\odot}
- Both R_{si} and $\delta z/H$ strong function of β
- If streams remain vertically self-gravitating, serious delay in circularization for χ_{BH} >0.75 (0.3) when M_{BH} =10⁶ M_{\odot} (10⁷ M_{\odot})

• In impulsive limit, streams miss each other by:

$$\frac{\delta z}{R_{si}} = \left(2\cos\iota\sin\frac{\delta\omega}{2}\sin^2\frac{\delta\Omega}{2} + \cos\frac{\delta\omega}{2}\sin\delta\Omega\right)^2 + \left(\cos\frac{\delta\omega}{2}(\cos\delta\Omega - 1) - \cos\iota\sin\frac{\delta\omega}{2}\sin\delta\Omega\right)^2$$

TDEs as Stellar Dynamical Probes

- TDEs offer indirect clues of extragalactic stellar dynamics
 - Rate, $\beta = R_t/R_p$

• Different TDE production mechanisms:

2-body relaxation (full loss cone): low rate, N(β) α β⁻¹
2-body relaxation (empty loss cone): low rate, β=1
Triaxial/axisymmetric orbits: high rate, N(β) α β⁻¹

• Other mechanisms unlikely to dominate event rate

Delays Due to Lense-Thirring Precession

• Height-normalized misalignment δz : sensitive to β

Tidal Disruption Basics

- Tidal radius: $R_t = R_* \sqrt[3]{M_{BH}} / M_*$
- Only SMBHs with M_{BH}<10⁸ M_☉ can disrupt solar-type stars
 Onless the SMBH is spinning rapidly (Kesden 11)
- Spread in debris energy: Δε ~ GM_{BH}R_{*} / R²_t
 Independent of R_p (Stone+13, Guillochon & Ramirez-Ruiz 13)
- Lightcurve often assumed to follow: $L \propto \dot{M} \propto t^{-5/3}$
 - At early times, numerical models for dM/dt necessary (Lodato+09, Guillochon & Ramirez-Ruiz 13)
- Strength of tidal encounter defined by penetration factor β=R_t/R_p
 1<β<47 for SMBHs; equivalently 1<R_p/R_g<47

Numerical Methods

- SPH code developed by Okazaki+ 02, based on Benz 90, Bate+ 95
- Initialize polytropic star ($\gamma = 5/3$) at $3R_t$
- Simulate disruption of e=1, e=0.98, e=0.8 orbits with
 - Newtonian potential
 - Pseudo-Newtonian potential (Wegg 12)

Tidal Disruption Physics

- Tidal radius: $R_t = R_* \sqrt[3]{M_{BH}} / M_*$
- Spread in debris energy: $\Delta \varepsilon \sim \frac{GM_{BH}R_*}{R^2}$
- Return time for most tightly bound debris:

$$t_{fall} \sim 20 \min \left(\frac{M_{BH}}{10^6 M_{sun}}\right)^{5/2} \left(\frac{R_p}{3R_s}\right)^3 \left(\frac{R_*}{R_{sun}}\right)^{-3/2}$$

- Lightcurve often assumed to follow: $L \propto \dot{M} \propto t^{-5/3}$
- Disk SED multicolor blackbody, peaked in UV/soft X-ray

Stages of Tidal Disruption

- I: approximate hydrostatic equilibrium
- II: tidal free fall, vertical collapse
- III: maximum compression, bounce
- IV: rebound/expansion
- V: pericenter return, circularization
- VI: accretion

(Evans & Kochanek 89)