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Purpose & Plan

• Lay out a general framework for calculating cosmological observables

• Integrate down the PNC of arbitrarily placed observer, in given arbitrary inhomogeneous
spacetime

• Propagate observer’s coordinates by Lie dragging

• Convert null geodesic eq & geodesic deviation eq to numerical form

• Calculate redshift, diameter distance, proper motions, image distortion

• Apply to Szekeres Metric and test.

• Explore various Szekeres models and their observational patterns.

• Problem of following moving sources

• How to find a later light ray that connects moving source and observer?

• A shooting problem - numerical trial & error?

• We show how to use geodesic deviation equation for instantaneous rates of change.



PNC & Observations in a General Model

• Calculating observations involves tracing light rays numerically.

• Possible sources observations:
⋆ redshift
⋆ proper motions (flow)
⋆ luminosity/diameter distance
⋆ image distortions (magnification, shear, twist)
⋆ number density

• Initial time — send out a set of rays;
sources move;
which directions to send rays at later times?
seems like big numerical trial & error exercise.

• Use geodesic deviation eq to get rates of change at initial time; & each successive time.



Observer’s Past Null Basis — Setup

• Observer uses angle on sky + time of observation

• Set up observer’s coordinates in general inhomogeneous model
Metric coordinates;
Orthonormal basis (near observer);
spherical basis (near observer);
past-null spherical basis;
propagate down PNC.



Observer’s Past Null Basis — Define

• Metric & coords (general): gab , xc ,

• Observer position (arbitrary): xc|o ,

• Orthonormal basis at obs: ei
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• Spherical basis at obs:

ẽτ̃ = e0

ẽr̃ = sin ϑ̃ cos ϕ̃ e1 + sin ϑ̃ sin ϕ̃ e2 + cos ϑ̃ e3

ẽϑ̃ = r̃ cos ϑ̃ cos ϕ̃ e1 + r̃ cos ϑ̃ sin ϕ̃ e2 − r̃ sin ϑ̃ e3

ẽϕ̃ = −r̃ sin ϑ̃ sin ϕ̃ e1 + r̃ sin ϑ̃ cos ϕ̃ e2 ,



• Convert to past-null spherical basis at obs:

τ̂ = r̃ + τ̃ , χ̂ = r̃ ↔ τ̃ = τ̂ − χ̂ , r̃ = χ̂ ,

→ êτ̂ = ẽτ̃ = e0

êχ̂ = −ẽτ̃ + ẽr̃ = −e0 + sin ϑ̂ cos ϕ̂ e1 + sin ϑ̂ sin ϕ̂ e2 + cos ϑ̂ e3

êϑ̂ = ẽϑ̃ = χ̂ cos ϑ̂ cos ϕ̂ e1 + χ̂ cos ϑ̂ sin ϕ̂ e2 − χ̂ sin ϑ̂ e3

êϕ̂ = ẽϕ̃ = −χ̂ sin ϑ̂ sin ϕ̂ e1 + χ̂ sin ϑ̂ cos ϕ̂ e2 ,

• Propagate these down the observer’s PNC.



Propagation Scheme

• Keep ϑ̂, ϕ̂ const along each light ray
i.e. Lie drag coords & basis down incoming null geodesics.

• Exactly the set-up for geodesic deviation eq to hold.
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Propagation Equations

• Geodesic Eq — light ray paths

δka

δχ̂
= 0 (good for tensor calcs)

dka

dχ̂
= −kbΓa

bck
c , kaka = 0 ,

dxa

dχ
= ka (good for numerics)

• Geodesic Deviation Eq — past-null-obs basis propagation
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(good for numerics)

êα ≡ { êτ , êχ̂ = k , êϑ̂ , êϕ̂ }



• Propagated (τ̂ , χ̂, ϑ̂, ϕ̂) is a coord system

• Propagated êα is coord basis — provide transformation between metric and observer’s
coordinates,

êαc = ec
α =

∂x̂α

∂xc
, ecα = êα

c =
∂xc

∂x̂α
.

• What we actually need (later) is not êα
a but its inverse êαa.



Propagation — Initial Conditions

Geodesic Eq
• In orthonormal frame, initial kα = (−1, 1, 0, 0), i.e.

|kbubu
a|o = 1 = |ka(δca + ucua)|o

Geodesic Deviation Eq
• êτ̂ |o = uo

• Take χ̂ → 0 limits of êα near-observer expressions
• Fermi-propagate k along u|o

δka
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• Take ϑ̂ & ϕ̂ derivatives of near-observer êχ̂ = k and use e.g.
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Observables - Redshift & Proper Motion

• Rate of change of observed angle with respect to observer time
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τe = the source proper time,
τ̃o = observer’s proper time,
τ̂ = its extension down the PNC.



• Hence
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• Note dual basis vectors êα actually what’s needed.



Observables - Diameter Distance

• Take a small displacement at the emitter, dxa

• Measured angular size is

δ2 = dϑ̂2 + sin2 ϑ̂ dϕ̂2

δ =
√

[

(êϑ̂a dxa)2 + sin2 ϑ̂ (êϕ̂b dxb)2
]

e

• Physical size — projected orthog to line of sight (2-space ⊥ k & ue)
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• Diameter distance is

dD =
D

δ
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DaDa



Observables - Image distortion

• Optical tensors no good — can’t integrate tensors

• Magnification, shear, twist, encoded in size of basis vectors

• Still working on this

• Probably need one more vector propagated



Szekeres Metric

ds2 = −dt2 +

(

R′ − RE′

E

)2

dr2

ǫ+ f
+

R2

E2

(

dp2 + dq2
)

• E = E(r, p, q)

• ǫ = +1, 0,−1

• Evolution function R(t, r) same as for LT.

• 6 arbitrary functions of r (f , M , a, S, P , Q)

• No Killing vectors

• V Interesting, not well explored



Numerics

• Major work by Tony Walters

• Γa
bc and Γa

bc,d not small!

• Extensively tested

• Still to be improved



Testing

• Analytic results for simple RW special case:
M = M0r

3, f = −kr2, a = 0, ǫ = +1, S = 1, P = 0, Q = 0

• Analytic results for simple RW special case

• Full agreement for all scalars, observables, basis vector magnitudes, affine param χ̂, some
coord values.

• Not a strong test

• Szekeres-RW special case:
M = M0r

3, f = −kr2, a = 0, ǫ = +1, S, P , Q not constant
RW in distorted coordinates

• Light paths not constant p, q.

• Still full agreement for all scalars, observables, basis vector magnitudes, affine param χ̂.

• Significant test



Results

• VERY preliminary

• Not fully checked

• Rather crude:
Model selection not yet well planned
Scales not yet properly set
Points on sky: 10 × 20 (run time)

• Run 2: k = −1, f = −kr2, M = M0r
3(1 + r), a = 0,

S = 1, P = 0, Q = r, χend = 0.54.

• Following plots show
set of dD skymaps at a sequence of z values,
then set of source proper motions at same z sequence.
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Diameter Distance at z =0.638691
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Diameter Distance at z =1.267383
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Apparent Motion at z =0.010000



Apparent Motion at z =0.638691



Apparent Motion at z =1.267383



Apparent Motion at z =1.896074



Apparent Motion at z =2.524765



Discussion

• Method allows calc of observational features for a given observer in a given model

• Method shows source movements, and greatly assists locating correct ray directions to
same sources at later times

• Szekeres provides a lot of freedom to tinker, many interesting possibilities

• Important complement to the Metric of the Cosmos Project

• Enables generation of very realistic fake data for testing latter

• Allows checking of results of latter

• Still refining probably a few more little bugs to be removed



Thankyou!


