# Observations in Inhomogeneous Models and the Szekeres Metric 

Charles Hellaby and Anthony Walters<br>ACGC, University of Cape Town

Texas Symposium for Relativistic Astrophysics, 2013/12/10


## Purpose \& Plan

- Lay out a general framework for calculating cosmological observables
- Integrate down the PNC of arbitrarily placed observer, in given arbitrary inhomogeneous spacetime
- Propagate observer's coordinates by Lie dragging
- Convert null geodesic eq \& geodesic deviation eq to numerical form
- Calculate redshift, diameter distance, proper motions, image distortion
- Apply to Szekeres Metric and test.
- Explore various Szekeres models and their observational patterns.
- Problem of following moving sources
- How to find a later light ray that connects moving source and observer?
- A shooting problem - numerical trial \& error?
- We show how to use geodesic deviation equation for instantaneous rates of change.


## PNC \& Observations in a General Model

- Calculating observations involves tracing light rays numerically.
- Possible sources observations:
$\star$ redshift
* proper motions (flow)
* luminosity/diameter distance
$\star$ image distortions (magnification, shear, twist)
$\star$ number density
- Initial time - send out a set of rays;
sources move;
which directions to send rays at later times?
seems like big numerical trial \& error exercise.
- Use geodesic deviation eq to get rates of change at initial time; \& each successive time.


## Observer's Past Null Basis - Setup

- Observer uses angle on sky + time of observation
- Set up observer's coordinates in general inhomogeneous model Metric coordinates;
Orthonormal basis (near observer); spherical basis (near observer);
past-null spherical basis;
propagate down PNC.


## Observer's Past Null Basis - Define

- Metric \& coords (general):
- Observer position (arbitrary):

$$
\begin{gathered}
g_{a b}, \quad x^{c}, \\
\left.x^{c}\right|_{o}, \\
\end{gathered}
$$

- Orthonormal basis at obs:

$$
\left.\overline{\mathbf{e}}_{i}\right|_{o}=\left[\bar{e}_{i}^{a} \boldsymbol{\partial}_{a}\right]_{o},
$$

- Spherical basis at obs:

$$
\begin{aligned}
& \tilde{\mathbf{e}}_{\tilde{\tau}}=\overline{\mathbf{e}}_{0} \\
& \tilde{\mathbf{e}}_{\tilde{\gamma}}=\sin \tilde{\vartheta} \cos \tilde{\varphi} \overline{\mathbf{e}}_{1}+\sin \tilde{\vartheta} \sin \tilde{\varphi} \overline{\mathbf{e}}_{2}+\cos \tilde{\vartheta} \overline{\mathbf{e}}_{3} \\
& \tilde{\mathbf{e}}_{\tilde{\vartheta}}=\tilde{r} \cos \tilde{\vartheta} \cos \tilde{\varphi} \overline{\mathbf{e}}_{1}+\tilde{r} \cos \tilde{\vartheta} \sin \tilde{\varphi} \overline{\mathbf{e}}_{2}-\tilde{r} \sin \tilde{\vartheta} \overline{\mathbf{e}}_{3} \\
& \tilde{\mathbf{e}}_{\tilde{\varphi}}=-\tilde{r} \sin \tilde{\vartheta} \sin \tilde{\varphi} \overline{\mathbf{e}}_{1}+\tilde{r} \sin \tilde{\vartheta} \cos \tilde{\varphi} \overline{\mathbf{e}}_{2},
\end{aligned}
$$

- Convert to past-null spherical basis at obs:

$$
\begin{array}{ll} 
& \hat{\tau}=\tilde{r}+\tilde{\tau}, \quad \hat{\chi}=\tilde{r} \quad \leftrightarrow \quad \tilde{\tau}=\hat{\tau}-\hat{\chi}, \tilde{r}=\hat{\chi}, \\
\rightarrow \quad & \hat{\mathbf{e}}_{\hat{\tau}}=\tilde{\mathbf{e}}_{\tilde{\tau}}=\overline{\mathbf{e}}_{0} \\
\hat{\mathbf{e}}_{\hat{\chi}}=-\tilde{\mathbf{e}}_{\tilde{\tau}}+\tilde{\mathbf{e}}_{\tilde{r}}=-\overline{\mathbf{e}}_{0}+\sin \hat{\vartheta} \cos \hat{\varphi} \overline{\mathbf{e}}_{1}+\sin \hat{\vartheta} \sin \hat{\varphi} \overline{\mathbf{e}}_{2}+\cos \hat{\vartheta} \overline{\mathbf{e}}_{3} \\
\hat{\mathbf{e}}_{\hat{\vartheta}}=\tilde{\mathbf{e}}_{\tilde{\vartheta}}=\hat{\chi} \cos \hat{\vartheta} \cos \hat{\varphi} \overline{\mathbf{e}}_{1}+\hat{\chi} \cos \hat{\vartheta} \sin \hat{\varphi} \overline{\mathbf{e}}_{2}-\hat{\chi} \sin \hat{\vartheta} \overline{\mathbf{e}}_{3} \\
\hat{\mathbf{e}}_{\hat{\varphi}}=\tilde{\mathbf{e}}_{\tilde{\varphi}}=-\hat{\chi} \sin \hat{\vartheta} \sin \hat{\varphi} \overline{\mathbf{e}}_{1}+\hat{\chi} \sin \hat{\vartheta} \cos \hat{\varphi} \overline{\mathbf{e}}_{2},
\end{array}
$$

- Propagate these down the observer's PNC.


## Propagation Scheme

- Keep $\hat{\vartheta}, \hat{\varphi}$ const along each light ray
i.e. Lie drag coords \& basis down incoming null geodesics.
- Exactly the set-up for geodesic deviation eq to hold.



## Propagation Equations

- Geodesic Eq — light ray paths

$$
\begin{array}{ll}
\frac{\delta k^{a}}{\delta \hat{\chi}}=0 & \text { (good for tensor calcs) } \\
\frac{\mathrm{d} k^{a}}{\mathrm{~d} \hat{\chi}}=-k^{b} \Gamma^{a}{ }_{b c} k^{c}, \quad k^{a} k_{a}=0, \quad \frac{\mathrm{~d} x^{a}}{\mathrm{~d} \chi}=k^{a} & \text { (good for numerics) }
\end{array}
$$

- Geodesic Deviation Eq - past-null-obs basis propagation

$$
\begin{aligned}
\frac{\delta^{2} \hat{e}_{\alpha}{ }^{a}}{\delta \hat{\chi}^{2}} & =-R^{a}{ }_{b c d} k^{b} \hat{e}_{\alpha}{ }^{c} k^{d} \\
\frac{\mathrm{~d}^{2} \hat{e}_{\alpha}{ }^{a}}{\mathrm{~d} \hat{\chi}^{2}} & =-k^{b}\left(2 \Gamma^{a}{ }_{b c} \frac{\mathrm{~d} \hat{e}_{\alpha}{ }^{c}}{\mathrm{~d} \hat{\chi}}+\hat{e}_{\alpha}{ }^{c} k^{d} \Gamma^{a}{ }_{d b, c}\right) \\
\hat{\mathbf{e}}_{\alpha} & \equiv\left\{\hat{\mathbf{e}}_{\tau}, \quad \hat{\mathbf{e}}_{\hat{\chi}}=\mathbf{k}, \quad \hat{\mathbf{e}}_{\hat{\vartheta}}, \quad \hat{\mathbf{e}}_{\hat{\varphi}}\right\}
\end{aligned}
$$

(good for tensor calcs)
(good for numerics)

- Propagated $(\hat{\tau}, \hat{\chi}, \hat{\vartheta}, \hat{\varphi})$ is a coord system
- Propagated $\hat{\mathbf{e}}_{\alpha}$ is coord basis - provide transformation between metric and observer's coordinates,

$$
\hat{e}^{\alpha}{ }_{c}=e_{c}{ }^{\alpha}=\frac{\partial \hat{x}^{\alpha}}{\partial x^{c}}, \quad e_{\alpha}^{c}=\hat{e}_{\alpha}{ }^{c}=\frac{\partial x^{c}}{\partial \hat{x}^{\alpha}} .
$$

- What we actually need (later) is not $\hat{e}_{\alpha}{ }^{a}$ but its inverse $\hat{e}^{\alpha}{ }_{a}$.


## Propagation - Initial Conditions

## Geodesic Eq

- In orthonormal frame, initial $k^{\alpha}=(-1,1,0,0)$, i.e.

$$
\left|k^{b} u_{b} u^{a}\right|_{o}=1=\left|k^{a}\left(\delta_{a}^{c}+u^{c} u_{a}\right)\right|_{o}
$$

Geodesic Deviation Eq

- $\left.\hat{\mathbf{e}}_{\hat{\tau}}\right|_{o}=\mathbf{u}_{o}$
- Take $\hat{\chi} \rightarrow 0$ limits of $\hat{\mathbf{e}}_{\alpha}$ near-observer expressions
- Fermi-propagate $\mathbf{k}$ along $\left.\mathbf{u}\right|_{o}$

$$
\begin{aligned}
\left.\frac{\delta k^{a}}{\delta \tau}\right|_{\hat{\chi}=0} & =\left[u_{o}^{b} \nabla_{b} k^{a}-k_{b} a_{o}^{b} u_{o}^{a}+k_{b} u_{o}^{b} a_{o}^{a}\right]_{\hat{\chi}=0}=0 \\
\text { and use }\left.\frac{\delta k^{a}}{\delta \hat{\tau}}\right|_{\hat{\chi}=0} & =\left.\left.\frac{\delta \hat{e}_{\hat{\tau}}{ }^{a}}{\delta \hat{\chi}}\right|_{\hat{\chi}=0} \rightarrow \frac{\mathrm{~d} \hat{e}_{\hat{\tau}}{ }^{a}}{\mathrm{~d} \hat{\chi}}\right|_{o}
\end{aligned}
$$

- Take $\hat{\vartheta} \& \hat{\varphi}$ derivatives of near-observer $\hat{\mathbf{e}}_{\hat{\chi}}=\mathbf{k}$ and use e.g.

$$
\left.\frac{\delta k^{a}}{\delta \hat{\vartheta}}\right|_{\hat{\chi}=0}=\left.\left.\frac{\delta \hat{e}_{\hat{\vartheta}}{ }^{a}}{\delta \hat{\chi}}\right|_{\hat{\chi}=0} \quad \rightarrow \quad \frac{\mathrm{~d} \hat{e}_{\hat{\vartheta}}{ }^{a}}{\mathrm{~d} \hat{\chi}}\right|_{0}
$$

## Observables - Redshift \& Proper Motion

- Rate of change of observed angle with respect to observer time

$$
\left.\frac{\mathrm{d} \tilde{x}^{m}}{\mathrm{~d} \tilde{\tau}}\right|_{o}=\left[\frac{\partial \tilde{x}^{m}}{\partial \hat{x}^{\beta}} \frac{\mathrm{d} \hat{x}^{\beta}}{\mathrm{d} \hat{\tau}} \frac{\mathrm{~d} \hat{\tau}}{\mathrm{~d} \tilde{\tau}}\right]_{o}=\left[\hat{e}_{\beta}{ }^{m} \frac{\mathrm{~d} \hat{x}^{\beta}}{\mathrm{d} \hat{\tau}}\right]_{0}
$$

where $\left[\frac{\mathrm{d} \hat{x}^{\beta}}{\mathrm{d} \hat{\tau}}\right]_{o}=\left[\frac{\mathrm{d} \hat{x}^{\beta}}{\mathrm{d} \hat{\tau}}\right]_{e}=\left[\frac{\partial \hat{x}^{\beta}}{\partial x^{a}} \frac{\mathrm{~d} x^{a}}{\mathrm{~d} \tau_{e}} \frac{\mathrm{~d} \tau_{e}}{\mathrm{~d} \hat{\tau}}\right]_{e}=\frac{\left[\hat{e}^{\beta}{ }_{a} u^{a}\right]_{e}}{(1+z)}$
$\tau_{e}=$ the source proper time,
$\tilde{\tau}_{o}=$ observer's proper time,
$\hat{\tau}=$ its extension down the PNC.

- Hence

$$
\begin{aligned}
1=\left.\frac{\mathrm{d} \hat{\tau}}{\mathrm{~d} \hat{\tau}}\right|_{o} & =\frac{\left[\hat{e}^{\hat{\tau}}{ }_{a} u^{a}\right]_{e}}{(1+z)} \quad \rightarrow \quad 1+z=\left[\hat{e}^{\hat{\tau}}{ }_{a} u^{a}\right]_{e} \\
\left.\frac{\mathrm{~d} \tilde{\vartheta}}{\mathrm{~d} \tilde{\tau}}\right|_{o} & =\frac{\left[\hat{e^{\hat{\vartheta}}}{ }_{a} u^{a}\right]_{e}}{(1+z)} \\
\left.\frac{\mathrm{d} \tilde{\varphi}}{\mathrm{~d} \tilde{\tau}}\right|_{o} & =\frac{\left[\hat{e} \hat{\varphi}{ }_{a} u^{a}\right]_{e}}{(1+z)} .
\end{aligned}
$$

- Note dual basis vectors $\hat{\mathbf{e}}^{\alpha}$ actually what's needed.


## Observables - Diameter Distance

- Take a small displacement at the emitter, $d x^{a}$
- Measured angular size is

$$
\begin{aligned}
\delta^{2} & =\mathrm{d} \hat{\vartheta}^{2}+\sin ^{2} \hat{\vartheta} \mathrm{~d} \hat{\varphi}^{2} \\
\delta & =\sqrt{\left[\left(\hat{e}^{\hat{\vartheta}}{ }_{a} d x^{a}\right)^{2}+\sin ^{2} \hat{\vartheta}\left(\hat{e}^{\hat{\varphi}_{b}} d x^{b}\right)^{2}\right]_{e}}
\end{aligned}
$$

- Physical size - projected orthog to line of sight (2-space $\perp \mathbf{k} \& \mathbf{u}_{e}$ )

$$
D^{a}=\left[h_{b}^{a} j_{c}^{b} \mathrm{~d} x^{c}\right]_{e}
$$

- Diameter distance is

$$
d_{D}=\frac{D}{\delta}, \quad D=\sqrt{D^{a} D_{a}}
$$

## Observables - Image distortion

- Optical tensors no good - can't integrate tensors
- Magnification, shear, twist, encoded in size of basis vectors
- Still working on this
- Probably need one more vector propagated


## Szekeres Metric

$$
d s^{2}=-\mathrm{d} t^{2}+\frac{\left(R^{\prime}-\frac{R E^{\prime}}{E}\right)^{2} \mathrm{~d} r^{2}}{\epsilon+f}+\frac{R^{2}}{E^{2}}\left(d p^{2}+d q^{2}\right)
$$

- $E=E(r, p, q)$
- $\epsilon=+1,0,-1$
- Evolution function $R(t, r)$ same as for LT.
- 6 arbitrary functions of $r(f, M, a, S, P, Q)$
- No Killing vectors
- V Interesting, not well explored


## Numerics

- Major work by Tony Walters
- $\Gamma^{a}{ }_{b c}$ and $\Gamma^{a}{ }_{b c, d}$ not small!
- Extensively tested
- Still to be improved


## Testing

- Analytic results for simple RW special case:
$M=M_{0} r^{3}, f=-k r^{2}, a=0, \epsilon=+1, S=1, P=0, Q=0$
- Analytic results for simple RW special case
- Full agreement for all scalars, observables, basis vector magnitudes, affine param $\hat{\chi}$, some coord values.
- Not a strong test
- Szekeres-RW special case:
$M=M_{0} r^{3}, f=-k r^{2}, a=0, \epsilon=+1, S, P, Q$ not constant
RW in distorted coordinates
- Light paths not constant $p, q$.
- Still full agreement for all scalars, observables, basis vector magnitudes, affine param $\hat{\chi}$.
- Significant test


## Results

- VERY preliminary
- Not fully checked
- Rather crude:

Model selection not yet well planned
Scales not yet properly set
Points on sky: $10 \times 20$ (run time)

- Run 2: $k=-1, f=-k r^{2}, M=M_{0} r^{3}(1+r), a=0$,

$$
S=1, P=0, Q=r, \chi_{e n d}=0.54
$$

- Following plots show
set of $d_{D}$ skymaps at a sequence of $z$ values, then set of source proper motions at same $z$ sequence.


Diameter Distance at $z=0.638691$



Diameter Distance at $z=1.267383$


Diameter Distance at $z=1.896074$

0.409
0.408
0.407
0.406
0.405
0.404
0.403
0.402

Diameter Distance at $\mathrm{z}=2.524765$


Apparent Motion at $z=0.010000$


Apparent Motion at $z=0.638691$


Apparent Motion at $z=1.267383$


Apparent Motion at $z=1.896074$


Apparent Motion at $z=2.524765$


## Discussion

- Method allows calc of observational features for a given observer in a given model
- Method shows source movements, and greatly assists locating correct ray directions to same sources at later times
- Szekeres provides a lot of freedom to tinker, many interesting possibilities
- Important complement to the Metric of the Cosmos Project
- Enables generation of very realistic fake data for testing latter
- Allows checking of results of latter
- Still refining probably a few more little bugs to be removed

Thankyou!

