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Einstein, Yukawa and Wheeler:
the birth of Relativistic Astrophysics
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Introducing the black hole

According to present cosmology, certain stars
end their careers in a total gravitational collapse that
transcends the ordinary laws of physics.

Remo Ruffini and John A. Wheeler

The quasistellar object, the pulsar, the
neutron star have all come onto the
scene of physics within the space of a
few years. Is the next entrant destined
to be the black hole? If so, it is diffi-
cult to think of any development that
could be of greater significance. A
black hole, whether of “ordinary size”
(approximately one solar mass, 1 Mg),
or much larger (around 10¢ Mg to 10'°
Mg, as proposed in the nuclei of some
galaxies) provides our “laboratory
model” for the gravitational collapse,
predicted by Einstein's theory, of the
universe itself.

A black hole is what is left behind
after an object has undergone complete
gravitational collapse. Spacetime is so
strongly curved that no light can come
out, no matter can be ejected and no
measuring rod can ever survive being
put in. Any kind of object that falls
into the black hole loses its separate
identity, preserving only its mass,
charge, angular momentum and linear
momentum (see figure 1). No one has
yet found a way to distinguish between
two black holes constructed out of the
most different kinds of matter if they
have the same mass, charge and angular
momentum. Measurement of these
three determinants is permitted by their
effect on the Kepler orbits of test ob-
jects, charged and uncharged, in revolu-
tion about the black hole.

How the physies of a black hole looks
depends more upon an act of choice
Ly the observer himself than an any-
thing else. Suppose he decides to fol-
low the collapsing matter through its
collapse down into the black hole.
Then he will see it crushed to indefi-

Remu Ruffini and John Wheeler are both
at Princeton University; Wheeler, cur-
rently on leave from Princeton, is
spending a year at Cal Tech and Moscow
State University.

nitely high density, and he himself will
be tom apart eventually by indefinitely
increasing tidal forces. No restraining
force whatsoever has the power to hold
him away from this catastrophe, once
he crossed a certain critical surface
known as the “horizon.” The final col-
lapse occurs a finite time after the pas-
sage of this surface, but it is inevitable.
Time and space are interchanged in-
side a black hole in an unusual way; the
direction of increasing proper time for
the observer is the direction of decreas-
ing values of the coordinate r. The ob-
server has no more power to retum to
a larger r value than he has power to
tumm back the hands on the clock of life
itsel. He can not even stay where he
is, and for a simple reason: no one has
the power to stop the advance of time.

Suppose the observer decides instead
to observe the collapse from far away.
Then, as price for his own safety, he is
deprived of any chance to see more
than the first steps on the way to col-
lapse. All signals and all information
from the later phases of collapse never
escape; they are caught up in the col-
lapse of the geometry itself.

That a sufficient mass of cold matter
will necessarily collapse to a black hole
(J. R. Oppenheimer and H. Snyder,!)
is onc of the most spectacular of all the
predictions of Einstein’s standard 1915
general relativity. ~ The geometry
around a collapsed object of spherical
symmetry (nonrotating!) was worked
out by Karl Schwarzschild of Géttingen,
father of the American astrophysicist
Martin Schwarzschild, as early as 1916.
In 1963 Roy Kerr? found the geometry
associated with a rotating collapsed ob-
ject. James Bardeen has recently em-
phasized that all stars have angular
momentum and that most stars—or star
cores—will have so much angular mo-
mentum that the black hole formed
upon collapse will be rotating at the
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The Black Hole Mass-Energy formula
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Vela satellites and GRBs
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Quantum Electrodynamical Effects in Kerr-Newmann Geometries

Thibaut Damour*
Joseph Henry Physical Laboratories, Princeton Univevsilty, Princeton, New Jevsey 08540

and

Remo Ruffinif
Institute fov Advanced Study, Princeton, New Jevsey 08540
(Received 13 January 1975)

Following the classical approach of Sauter, of Heisenberg and Euler and of Schwinger
the process of vacuum polarization in the field of a “bare” Kerr-Newman geometry is
studied. The value of the eritical strength of the electromagnetic fields is given together
with an analysis of the feedback of the discharge on the geometry. The relevance of this
analysis for current astrophysical observations is mentioned.

and possibly of galactic nuclei. In particular

this work naturally leads to a most simple model
for the explanation of the recently discovered y-
rays bursts,'® It is desirable that possible coin-

Expected energy: ~ 10 (M_ /M_ ) erg
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The
Dyado-
torus
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“Von Kernen zu den Sternen”
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On the electrodynamical
structure of a self-consistent
approach to neutron star cores

M. Rotondo, J. Rueda, R. Ruffini, S.-S. Xue, PRC, in press.



The first genuine short GRB 090227B
Muccmoe’r al. Apl) 763, 125 (2013)
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Pulses of Gravitational Radiation of a Particle Falling

Radially into a Schwarzschild Black Hole*

Marc Davis, Remo Ruffini, and Jayme Tiomnot

Joseph Henry Laboratories, Princeton Universily, Princeton, New Jersey 08540
(Received 20 December 1971)
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FIG. 1. Asymptotic behavior of the outgoing burst of gravitational radiation compared with the effective potential,

as a function of the retarded time (f — »*)/M.

(a) Effective potential for ! =2 in units of M® as a function of the retarded

time (f —*)/M = (T — R*)/M. For selected points the value of the Schwarzschild coordinate » is also given. (b) Radial
dependence of the outgoing field R, (r,f) as a function of the retarded time for { = 2. it

mann tensor components (see text) given as a function of the retarded time for = 2,3, 4.

over angles for [ = 2,3; the contributions of higher ! are negligible.

(c) R; (v*,t) factors of the Rie=
(d) Energy flux integrated
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Gravitational Waves vs. X and Gamma Ray Emission in a Short GRB

Detectability GRB 090227B

by Adv. LIGO

Plot taken from Review Effective One-Body

Formalism: T. Damour; arXiv.1212.3169

102!

1072

h(f2)/V fi

1024

10 %

- from w1 0.0k,
e -

1023

| M1=M2=1.34 Msun
| R1=R2=12.24 km

._\.

“,

S/N=0.3

Z=1.61

S, —Adv. LIGO

h,. [Landau&Lifshits|
hFO" A3PN

hFOB Pl [A3PN]
hE" P! [A4PN]

10 20 50

f; (Hz)
Oliveira, Rueda, Ruffini, submitted to ApJ. arXiv:1205.6915

200 500 1000




Gravitational Waves vs. X and Gamma Ray Emission in a Short GRB
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Gravitational Waves vs. X and Gamma Ray
Emission in a Short GRB
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External layers
of the star

Collapsing core



Electromagnetic field created by the
- charge segregation at the moment of
- the collapse.
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Black hole

%%//% formation
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External layers of
the star

Pair-electromagnetic (PEM)
pulse expansion



~ Pair-electromagnetic-

External layers hit by | baryonic (PEMB) pulse
the PEM pulse

Proper-GRB (P-GRB) emission



Accelerated
baryonic matter
(ABM) pulse

Interstellar /
medium Prompt emission
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