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Neutron Stars -- More than just neutrons ...

» The behaviour of matter at densities above nuclear density
but at low temperature 1s not well understood.

 Earth-based experiments like the Relativistic Heavy Ion Collider
(RHIC) provide information only about the very high T phase

« Different hypotheses include P \gx“"
different particle species and
phases of matter in the core

 Each of the possible equations
of state (EOS) provides different

. . . absolutely stable

predictions about the possible b,  Sironge quork 8 10" g o™

surface motter

masses and radii of NS. 10" g cm”

pinjjsadns u

* Major goal of studying NS i1s to
make measurements that constrain
the EOS of dense matter. Drawing by James Lattimer



Mass (Solar Mass Units)

Mass - Radius Curves

3 T T I | | I
600 Hz
O HZ ........
25
APR
ok e T

BBB2

0 I T S S S
6 8 10 12 14 16

Radius (km)




Mass - Radius Curves

Mass (Solar Mass Units)

0 I T S S S
6 8 10 12 14 16

Radius (km)

Measurement of Shapiro Delay gives M=1.93 M, Demorest et al. Nature 2010



Neutron Stars in LMXB

A Low Mass X-Ray Binary: 4U 1820-30 [ ) An aCC reti ng NS has

) | different luminosity states:
quiescence or outburst

vl ° Quiescence — Little or no
accretion, flux mainly from
NS surface

i 1,200 km/sec

Outburst — heavy accretion

Accretion powered pulsations sometimes seen
X-ray Bursts sometimes seen

Pulsations and X-ray Bursts are flux originating
from the NS surface



Rotating Hot Spots

Rotation Powered X-ray]pulsars - NO accretion, x-ray emission
dominated by emission from the surface (not light cylinder). Eg:
Bogdanov ApJ 2013

Accretion Powered Pulsars — pulsations from hot spot
X-ray Bursts — oscillations at the spin frequency observed

A “hot spot” on the NS surface is most likely the source for the
periodic flux from these sources




NS Constraints from Rotating Hot Spots

» Find neutron stars whose light is emitted from the star’ s surface

« Model the local microphysics of the emitting area
(spot size, shape, emission spectrum and beaming)

« Combine with relativistic raytracing to find which photons
reach the telescope to construct light curve

e Light-deflection depends on the ratio GM/Rc?
» Rotational “Doppler” effects depend on RQ/c

: Make assumptions about properties of
star and emission and compute light curve.

: Measure light curve and find best fit set of
parameters characterizing star and emission properties.



Flux

Dependence of Pulse

M/R = “compactness’ affects how
much of the star is visible due to
light-bending

e larger M/R -> less modulation

These effects are independent of the
photon’ s energy.
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Inclination and emission angle

0 = angle between the
hotspot’ s centre and the spin Spin Axis Initial photon
axis

i = angle between the
observer and the spin axis
(orbital and spin angular
momenta aligned)

o= angje between the
photon' s initial direction and
the normal to the surface.

direction

To Observer

Small sin(i)sin(0) low
modulation — degeneracy
with M/R



Flux / Max. Flux
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Dependence of Pulse Profiles on Speed

R Q sin0 sini (1-2M/R)12 = speed affects
asymmetries between rise and fall times

e larger speed -> larger time asymmetries
* Degeneracy between R and sin0 sini
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Pulse Shapes for 1.4 M, Stars
Isotropic + Equatorial Emission

R=9.6 km Spin=300 Hz v=0.08 ¢
R=9.8 km Spin=600 Hz v=0.16 ¢
R=15.1 km Spin=300 Hz v=0.11c

R=16.4 km Spin=600 Hz v=0.24 ¢




Anisotropic Emission

Beaming affects:

 modulation: anti-beaming, (case C)
allows the spot to be seen more
easily than normal beaming (case
A)

A = Beamed towards the normal
* timing asymmetries: peak emission
occurs earlier for C than for A

* Pulse shape: double-peaks or
flattened peaks possible with C

B = Isotropic emission

S

C = Beamed towards the surface

Accretion Powered Pulsations — Case C
with an unconstrained amount

X-ray Burst Oscillations — Case A, fairly
well known limb-darkening




Other complications

* Oblate shape of star

 Scattering by optically thin plasma near star

« Multiple spots may be visible (ibragimov and Poutanen 2009)
« Spots are not necessarily circles (Kajava et al 2011)

« MHD simulations by Kulkarni, Romanova & Lovelace

 Accretion onto a rapidly rotating magnetic NS
« Complicated spot shapes result
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Stellar Oblateness
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X-ray Telescopes
RXTE (1996 — 2012) X-ray timing

Chandra and XMM — mainly spectroscopy and
imaging, some timing capabilities

NICER = Neutron Star Interior Composition
ExploreR, new instrument on ISS, approved for
launch in 2016

ATHENA: spectroscopy, imaging and timing; if
approved launch 2028 (ESA)

Proposed Missions (ESA)

— LOFT: Large Observatory For X-ray Timing; if

approved launch 2024



Constraints from Accreting ms-
Period Pulsars

Models include oblate shape, time delays
Unknown inclination angle, mass, radius

Different pulse shapes in different time
oeriods: allow for changes in spot location and
spectrum, keep i, M, R fixed

Free parameter describing anisotropy and
freedom in choosing spectral model dominate
precision

* Leahy, Morsink & Chou, ApJ 2011
* Morsink & Leahy, ApJ 2011
* Leahy, Morsink, Chung, & Chou, ApJ 2009



Normalized Flux
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Normalized Flux
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Evidence for an antipodal spot visible part of the time.



XTE J1807 Epoch 1
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XTE J1807 Epoch 2
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XTE J1807 Epoch 3
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Mass (Solar Mass Units)
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An Allowed EQOS?
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X-ray Bursts

X-ray burst spectrum is well modeled by a limb-
darkened blackbody

Fewer free parameters may allow for better constraints

Small subset of LMXB NS have both accretion powered
pulsations, and pulsations during X-ray bursts!

Current collaboration with Jason Fiege (U of Manitoba)
making use of genetic algorithms for fitting, Abigail
Stevens (MSc U of A) and Denis Leahy (U of Calgary).
(See also Lo, Miller, Bhattacharrya & Lamb 2013,
Psaltis, Ozel & Chakrabarty 2013)

How precise and accurate can we determine M and R?



Theoretical curves for M=1.6, R=12km,
spin=600 Hz, i=60, theta=20
v~0.05c

Spherical Star
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Curves are almost sinusoidal — almost anything will fit!



Genetic Algorithm Best fit contours (after
adding Poisson Noise)

Parameter Distribution
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True value within 1 sigma of best-fit model (star) but poor
accuracy and precision



Theoretical curves for M=1.6, R=12km,
spin=600 Hz, i=60, theta=60
v~0.15c

Spherical Star
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Curves are asymmetric — “features” help fitting



Genetic Algorithm Best fit contours (after
adding Poisson Noise)
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Theoretical curves for M=1.6, R=12km,
spin=600 Hz, i=60, theta=20 and oblate
v~ 0.05c
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Curves are less modulated than those produced by spherical star



Genetic Algorithm Best fit contours (after
adding Poisson Noise)
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Better accuracy and precision compared to spherical star; oblate
shape “breaks’ degeneracy between angles and radius



Conclusions

e All methods for constraining Mass and Radius
for neutron stars are model dependent and
may suffer from unknown systematics

* I[mportant to explore many independent
methods to determine EOS!

e X-ray burst observations have potential to

provide better constraints, with LOFT’s better
statistics



