## Effects of Parity Violation on Polarization and Non-gaussianity of Primordial Gravitational Waves in Hořava-Lifshitz Gravity

Qiang Wu<br>Zhejiang University of Technology<br>Hangzhou, Zhejiang<br>China

27th Texas Symposium on Relativistic Astrophysics

Dallas, TX

DEC. 9, 2013

This talk bases on the published paper

Polarizing primordial gravitational waves by parity violation Anzhong Wang, Qiang Wu, Wen Zhao, Tao Zhu Phys. Rev. D87, 103512 (2013)

Effects of parity violation on non-gaussianity of primordial gravitational waves in Hořava-Lifshitz gravity
Tao Zhu, Wen Zhao, Yongqing Huang, Anzhong Wang, and Qiang Wu
Phys. Rev. D88, 063508 (2013)

## Outline

Introduction

Nonprojectable General Covariant HL Gravity

Polarization of PGW

Detection of circular polarization of PGW

Bispectrum and Non-gaussianity

Summary

## Introduction

- Primordial gravitational waves (PGW) can propagate freely from the very early universe, so one can see the very early universe though PGW


## Introduction

- Primordial gravitational waves (PGW) can propagate freely from the very early universe, so one can see the very early universe though PGW
- PGWs produce the TT, EE, BB and TE spectra of CMB, but TB and EB spectra only for violating parity effects


## Introduction

- Primordial gravitational waves (PGW) can propagate freely from the very early universe, so one can see the very early universe though PGW
- PGWs produce the TT, EE, BB and TE spectra of CMB, but TB and EB spectra only for violating parity effects
- Parity violation effects have contributions to PGW Polarization and Non-gaussianities.


## Introduction

- Primordial gravitational waves (PGW) can propagate freely from the very early universe, so one can see the very early universe though PGW
- PGWs produce the TT, EE, BB and TE spectra of CMB, but TB and EB spectra only for violating parity effects
- Parity violation effects have contributions to PGW Polarization and Non-gaussianities.
- In general covariant Hořava-Lifshitz gravity, the Lorentz symmetry is broken in the UV, and parity-violating operators appear.

Nonprojectable General Covariant HL Gravity

## Nonprojectable General Covariant HL Gravity

- Hořava-Lifshitz gravity is power-counting renormalizable by breaking the general covariance symmetry in the UV, and including only high-order spatial derivative operators.


## Nonprojectable General Covariant HL Gravity

- Hořava-Lifshitz gravity is power-counting renormalizable by breaking the general covariance symmetry in the UV, and including only high-order spatial derivative operators.
- The metric can be written in ADM form


## Nonprojectable General Covariant HL Gravity

- Hořava-Lifshitz gravity is power-counting renormalizable by breaking the general covariance symmetry in the UV, and including only high-order spatial derivative operators.
- The metric can be written in ADM form

$$
\begin{aligned}
d s^{2}=-N^{2} c^{2} d t^{2}+g_{i j}\left(d x^{i}+\right. & \left.N^{i} d t\right)\left(d x^{j}+N^{j} d t\right) \\
& (i, j=1,2,3)
\end{aligned}
$$

where, $N=N(\mathbf{x}, t)$

## Nonprojectable General Covariant HL Gravity

- Hořava-Lifshitz gravity is power-counting renormalizable by breaking the general covariance symmetry in the UV, and including only high-order spatial derivative operators.
- The metric can be written in ADM form

$$
\begin{aligned}
d s^{2}=-N^{2} c^{2} d t^{2}+g_{i j}\left(d x^{i}+\right. & \left.N^{i} d t\right)\left(d x^{j}+N^{j} d t\right), \\
& (i, j=1,2,3)
\end{aligned}
$$

where, $N=N(\mathbf{x}, t) \rightarrow$ Nonprojectable.

## Nonprojectable General Covariant HL Gravity

- Hořava-Lifshitz gravity is power-counting renormalizable by breaking the general covariance symmetry in the UV, and including only high-order spatial derivative operators.
- The metric can be written in ADM form

$$
\begin{aligned}
d s^{2}=-N^{2} c^{2} d t^{2}+g_{i j}\left(d x^{i}+\right. & \left.N^{i} d t\right)\left(d x^{j}+N^{j} d t\right), \\
& (i, j=1,2,3)
\end{aligned}
$$

where, $N=N(\mathbf{x}, t) \rightarrow$ Nonprojectable.Define $a_{i}=N,_{i} / N$

## Nonprojectable General Covariant HL Gravity

- Hořava-Lifshitz gravity is power-counting renormalizable by breaking the general covariance symmetry in the UV, and including only high-order spatial derivative operators.
- The metric can be written in ADM form

$$
\begin{aligned}
d s^{2}=-N^{2} c^{2} d t^{2}+g_{i j}\left(d x^{i}+\right. & \left.N^{i} d t\right)\left(d x^{j}+N^{j} d t\right), \\
& (i, j=1,2,3)
\end{aligned}
$$

where, $N=N(\mathbf{x}, t) \rightarrow$ Nonprojectable.Define $a_{i}=N_{, i} / N$

- Anisotropy scaling gives the different dimensions between space and time


## Nonprojectable General Covariant HL Gravity

- Hořava-Lifshitz gravity is power-counting renormalizable by breaking the general covariance symmetry in the UV, and including only high-order spatial derivative operators.
- The metric can be written in ADM form

$$
\begin{aligned}
d s^{2}=-N^{2} c^{2} d t^{2}+g_{i j}\left(d x^{i}+\right. & \left.N^{i} d t\right)\left(d x^{j}+N^{j} d t\right), \\
& (i, j=1,2,3)
\end{aligned}
$$

where, $N=N(\mathbf{x}, t) \rightarrow$ Nonprojectable.Define $a_{i}=N_{, i} / N$

- Anisotropy scaling gives the different dimensions between space and time

$$
[d x]=[k]^{-1}, \quad[d t]=[k]^{-3},
$$

## Nonprojectable General Covariant HL Gravity

- Hořava-Lifshitz gravity is power-counting renormalizable by breaking the general covariance symmetry in the UV, and including only high-order spatial derivative operators.
- The metric can be written in ADM form

$$
\begin{aligned}
d s^{2}=-N^{2} c^{2} d t^{2}+g_{i j}\left(d x^{i}+\right. & \left.N^{i} d t\right)\left(d x^{j}+N^{j} d t\right) \\
& (i, j=1,2,3)
\end{aligned}
$$

where, $N=N(\mathbf{x}, t) \rightarrow$ Nonprojectable.Define $a_{i}=N_{, i} / N$

- Anisotropy scaling gives the different dimensions between space and time

$$
\begin{gathered}
{[d x]=[k]^{-1}, \quad[d t]=[k]^{-3},} \\
{\left[N^{i}\right]=[c]=\frac{[d x]}{[d t]}=[k]^{2}, \quad\left[g_{i j}\right]=[N]=[1],} \\
{\left[K_{i j}\right]=[k]^{3}, \quad\left[\Gamma_{j k}^{i}\right]=[k], \quad\left[R_{j k l}^{i}\right]=[k]^{2} .}
\end{gathered}
$$

- To build the action, collect all scalars up to six order of $[k]$,
- To build the action, collect all scalars up to six order of $[k]$,

$$
\begin{aligned}
{[k]^{6}: } & K_{i j} K^{i j}, K^{2}, R^{3}, R R_{i j} R^{i j}, R_{j}^{i} R_{k}^{j} R_{i}^{k},(\nabla R)^{2}, \\
& \left(\nabla_{i} R_{j k}\right)\left(\nabla^{i} R^{j k}\right),\left(a_{i} a^{i}\right)^{2} R,\left(a_{i} a^{i}\right)\left(a_{i} a_{j} R^{i j}\right), \\
& \left(a_{i} a^{i}\right)^{3}, a^{i} \Delta^{2} a_{i},\left(a^{i}{ }_{i}\right) \Delta R, \ldots, \\
{[k]^{5}: } & K_{i j} R^{i j}, \epsilon^{i j k} R_{i l} \nabla_{j} R_{k}^{l}, \epsilon^{i j k} a_{i} a_{l} \nabla_{j} R_{k}^{l}, \\
& a_{i} a_{j} K^{i j}, K^{i j} a_{i j},\left(a_{i}^{i}{ }_{i}\right) K,
\end{aligned}
$$

$[k]^{4}: R^{2}, R_{i j} R^{i j},\left(a_{i} a^{i}\right)^{2},\left(a_{i}^{i}\right)^{2},\left(a_{i} a^{i}\right) a^{j}{ }_{j}$, $a^{i j} a_{i j},\left(a_{i} a^{i}\right) R, a_{i} a_{j} R^{i j}, R a^{i}{ }_{i}$,
$[k]^{3}: \omega_{3}(\Gamma) \rightarrow$ Chern - Simon,
$[k]^{2}: R, a_{i} a^{i}$,
$[k]^{1}$ : None,
$[k]^{0}: \gamma_{0}$,

## Linearized Tensor Perturbations

## Linearized Tensor Perturbations

- Tensor perturbation in the FRW universe


## Linearized Tensor Perturbations

- Tensor perturbation in the FRW universe

$$
\delta g_{i j}=a^{2}(\eta) h_{i j}(\eta, \mathbf{x}), \mathbf{i}, \mathbf{j}=\mathbf{1}, \mathbf{2}, \mathbf{3}
$$

## Linearized Tensor Perturbations

- Tensor perturbation in the FRW universe

$$
\delta g_{i j}=a^{2}(\eta) h_{i j}(\eta, \mathbf{x}), \mathbf{i}, \mathbf{j}=\mathbf{1}, \mathbf{2}, \mathbf{3}
$$

with $h_{i}^{i}=0$ and $\partial^{i} h_{i j}=0$

## Linearized Tensor Perturbations

- Tensor perturbation in the FRW universe

$$
\delta g_{i j}=a^{2}(\eta) h_{i j}(\eta, \mathbf{x}), \mathbf{i}, \mathbf{j}=\mathbf{1}, \mathbf{2}, \mathbf{3}
$$

with $h_{i}^{i}=0$ and $\partial^{i} h_{i j}=0$

- Two independent components only:


## Linearized Tensor Perturbations

- Tensor perturbation in the FRW universe

$$
\delta g_{i j}=a^{2}(\eta) h_{i j}(\eta, \mathbf{x}), \mathbf{i}, \mathbf{j}=\mathbf{1}, \mathbf{2}, \mathbf{3}
$$

with $h_{i}^{i}=0$ and $\partial^{i} h_{i j}=0$

- Two independent components only:

$$
h_{+}, h_{\times}
$$

- Expansion using circular polarization tensor

$$
h_{i j}(\eta, x)=\int \frac{d^{3} k}{(2 \pi)^{3}} \sum_{s=R, L} p_{i j}^{s} \psi_{\mathbf{k}}^{s}(\eta) e^{i \mathbf{k x}}
$$

- Expansion using circular polarization tensor

$$
h_{i j}(\eta, x)=\int \frac{d^{3} k}{(2 \pi)^{3}} \sum_{s=R, L} p_{i j}^{s} \psi_{\mathbf{k}}^{s}(\eta) e^{i \mathbf{k} \mathbf{x}}
$$

where $p_{i j}^{s}$ is the circular polarization tensor

- Expansion using circular polarization tensor

$$
h_{i j}(\eta, x)=\int \frac{d^{3} k}{(2 \pi)^{3}} \sum_{s=R, L} p_{i j}^{s} \psi_{\mathbf{k}}^{s}(\eta) e^{i \mathbf{k} \mathbf{x}}
$$

where $p_{i j}^{s}$ is the circular polarization tensor defined by

- Expansion using circular polarization tensor

$$
h_{i j}(\eta, x)=\int \frac{d^{3} k}{(2 \pi)^{3}} \sum_{s=R, L} p_{i j}^{s} \psi_{\mathbf{k}}^{s}(\eta) e^{i \mathbf{k} \mathbf{x}}
$$

where $p_{i j}^{s}$ is the circular polarization tensor defined by

$$
\begin{gathered}
i k_{s} e^{r s j} p_{i j}^{s}=k \rho^{s} p_{i}^{r s} \\
\rho^{R}=1, \rho^{L}=-1
\end{gathered}
$$

with the normalization condition

$$
p_{j}^{* i s} p_{i}^{j s^{\prime}}=2 \delta^{s s^{\prime}}
$$

## Hořava-Lifshitz gravity with parity violation terms

- Action of HL gravity for tensor perturbaions


## Hořava-Lifshitz gravity with parity violation terms

- Action of HL gravity for tensor perturbaions

$$
\begin{aligned}
S_{g w}^{(2)}= & \frac{1}{2} \int d \eta d^{3} x \frac{\zeta^{2} a^{2}}{2}\left\{\left(\partial_{\eta} h_{i j}\right)^{2}-\left(1-\bar{A}+\alpha_{0} \frac{\mathcal{H}}{a}\right)\left(\partial h_{i j}\right)^{2}\right. \\
& +\alpha_{3} \frac{e^{i j k}}{a}\left(h_{i, l}^{m} h_{k, m j}^{l}-h_{i m, l} h_{k, j}^{m l}\right)+\frac{\alpha_{4}}{a^{2}}\left(\partial^{2} h_{i j}\right)^{2} \\
& \left.+\alpha_{5} \frac{e^{i j k}}{a^{3}} \partial^{2} h_{i l}\left(\partial^{2} h_{k}^{l}\right)_{, j}+\frac{\alpha_{6}}{a^{4}}\left(\partial \partial^{2} h_{i j}\right)^{2}\right\}
\end{aligned}
$$

- Under the circular polarization tensor basis

$$
\begin{aligned}
S_{g w}^{(2)}= & \sum_{s=R, L} \int d \eta d^{3} k \frac{\zeta^{2} a^{2}}{2}\left\{\left(\psi_{\mathbf{k}}^{\prime}\right)^{2}-\left(1-\bar{s}+\alpha_{0} H\right) k^{2}\left(\psi_{\mathbf{k}}^{s}\right)^{2}\right. \\
& +\alpha_{3} \rho^{s} \frac{k^{3}}{a}\left(\psi_{\mathbf{k}}^{s}\right)^{2}+\alpha_{4} \frac{k^{4}}{a^{2}}\left(\psi_{\mathbf{k}}^{s}\right)^{2} \\
& \left.+\alpha_{5} \rho^{s} \frac{k^{5}}{a^{3}}\left(\psi_{\mathbf{k}}^{s}\right)^{2}+\alpha_{6} \frac{k^{6}}{a^{4}}\left(\psi_{\mathbf{k}}^{s}\right)^{2}\right\} .
\end{aligned}
$$

- Field equation
- Field equation

Define $v_{\mathbf{k}}^{s}(\eta) \equiv a \zeta \psi_{\mathbf{k}}^{s}(\eta)$, we obtain

$$
v_{k}^{s \prime \prime}(\eta)+\left[\omega_{s}^{2}(\eta)-\frac{a^{\prime \prime}}{a}\right] v_{k}^{s}(\eta)=0
$$

- Field equation

Define $v_{\mathbf{k}}^{s}(\eta) \equiv a \zeta \psi_{\mathbf{k}}^{s}(\eta)$, we obtain

$$
v_{k}^{s \prime \prime}(\eta)+\left[\omega_{s}^{2}(\eta)-\frac{a^{\prime \prime}}{a}\right] v_{k}^{s}(\eta)=0
$$

- Field equation

Define $v_{\mathbf{k}}^{s}(\eta) \equiv a \zeta \psi_{\mathbf{k}}^{s}(\eta)$, we obtain

$$
v_{k}^{s \prime \prime}(\eta)+\left[\omega_{s}^{2}(\eta)-\frac{a^{\prime \prime}}{a}\right] v_{k}^{s}(\eta)=0
$$

$\omega_{s}^{2}(\eta)=\left(1-\bar{A}-\alpha_{0} H\right) k^{2}-\alpha_{3} \rho^{s} \frac{k^{3}}{a}-\alpha_{4} \frac{k^{4}}{a^{2}}+\alpha_{5} \rho^{s} \frac{k^{5}}{a^{3}}-\alpha_{6} \frac{k^{6}}{a^{4}}$.
With the de Sitter background, $a=-1 /(H \eta)$.

- Power spectrum of PGW
- Power spectrum of PGW

The two point correlation function

$$
\left\langle\psi_{k_{1}}^{s_{1}}(0) \psi_{k_{2}}^{s_{2}}(0)\right\rangle=\frac{\Delta_{T}^{2}}{2 k_{1}^{3} H^{2}}(2 \pi)^{5} \delta\left(\mathbf{k}_{1}+\mathbf{k}_{2}\right)
$$

- Power spectrum of PGW

The two point correlation function

$$
\begin{aligned}
&\left\langle\psi_{k_{1}}^{s_{1}}(0) \psi_{k_{2}}^{s_{2}}(0)\right\rangle=\frac{\Delta_{T}^{2}}{2 k_{1}^{3} H^{2}}(2 \pi)^{5} \delta\left(\mathbf{k}_{1}+\mathbf{k}_{2}\right) \\
& \Delta_{T}^{2} \equiv \frac{k^{3}\left(\left|\psi_{k}^{R}\right|^{2}+\left|\psi_{k}^{L}\right|^{2}\right)}{\left(2 \pi^{2}\right)} \\
&=\frac{H^{2}}{4 \pi^{2}}\left(1+21 \delta_{1}^{2} \varepsilon_{\mathrm{HL}}^{2}+\mathcal{O}\left(\varepsilon_{\mathrm{HL}}^{3}\right)\right)
\end{aligned}
$$

- Power spectrum of PGW

The two point correlation function

$$
\begin{aligned}
&\left\langle\psi_{k_{1}}^{s_{1}}(0) \psi_{k_{2}}^{s_{2}}(0)\right\rangle=\frac{\Delta_{T}^{2}}{2 k_{1}^{3} H^{2}}(2 \pi)^{5} \delta\left(\mathbf{k}_{1}+\mathbf{k}_{2}\right) \\
& \Delta_{T}^{2} \equiv \frac{k^{3}\left(\left|\psi_{k}^{R}\right|^{2}+\left|\psi_{k}^{L}\right|^{2}\right)}{\left(2 \pi^{2}\right)} \\
&=\frac{H^{2}}{4 \pi^{2}}\left(1+21 \delta_{1}^{2} \varepsilon_{\mathrm{HL}}^{2}+\mathcal{O}\left(\varepsilon_{\mathrm{HL}}^{3}\right)\right)
\end{aligned}
$$

- Degree of circular polarization

$$
\begin{aligned}
\Pi & \equiv \frac{\left|\psi_{k}^{R}\right|^{2}-\left|\psi_{k}^{L}\right|^{2}}{\left|\psi_{k}^{R}\right|^{2}+\left|\psi_{k}^{L}\right|^{2}} \\
& =3 \delta_{1} \varepsilon_{\mathrm{HL}}+\left(17 \delta_{1}^{3}-3 \delta_{2}\right) \varepsilon_{\mathrm{HL}}^{3} / 2+\mathcal{O}\left(\varepsilon_{\mathrm{HL}}^{5}\right)
\end{aligned}
$$

- Power spectrum of PGW

The two point correlation function

$$
\begin{aligned}
&\left\langle\psi_{k_{1}}^{s_{1}}(0) \psi_{k_{2}}^{s_{2}}(0)\right\rangle=\frac{\Delta_{T}^{2}}{2 k_{1}^{3} H^{2}}(2 \pi)^{5} \delta\left(\mathbf{k}_{1}+\mathbf{k}_{2}\right) \\
& \Delta_{T}^{2} \equiv \frac{k^{3}\left(\left|\psi_{k}^{R}\right|^{2}+\left|\psi_{k}^{L}\right|^{2}\right)}{\left(2 \pi^{2}\right)} \\
&=\frac{H^{2}}{4 \pi^{2}}\left(1+21 \delta_{1}^{2} \varepsilon_{\mathrm{HL}}^{2}+\mathcal{O}\left(\varepsilon_{\mathrm{HL}}^{3}\right)\right)
\end{aligned}
$$

- Degree of circular polarization

$$
\begin{aligned}
\Pi \equiv & \frac{\left|\psi_{k}^{R}\right|^{2}-\left|\psi_{k}^{L}\right|^{2}}{\left|\psi_{k}^{R}\right|^{2}+\left|\psi_{k}^{L}\right|^{2}} \\
= & 3 \delta_{1} \varepsilon_{\mathrm{HL}}+\left(17 \delta_{1}^{3}-3 \delta_{2}\right) \varepsilon_{\mathrm{HL}}^{3} / 2+\mathcal{O}\left(\varepsilon_{\mathrm{HL}}^{5}\right) \\
& \quad \varepsilon_{\mathrm{HL}} \equiv H / M_{*} \ll 1
\end{aligned}
$$








## Detection of circular polarization of PGW

## Detection of circular polarization of PGW

- CMB gives

$$
|\Pi|>0.35\left(\frac{r}{0.05}\right)^{-0.6}
$$

## Detection of circular polarization of PGW

- CMB gives

$$
|\Pi|>0.35\left(\frac{r}{0.05}\right)^{-0.6}
$$

where, $r$ is the tensor-to-scalar ratio. The relevant frequency is around $f \simeq 10^{-17} \mathrm{~Hz}$.
The 9-year WMAP gives $r<0.13$ at $95 \%$ confidence level.

## Detection of circular polarization of PGW

- CMB gives

$$
|\Pi|>0.35\left(\frac{r}{0.05}\right)^{-0.6}
$$

where, $r$ is the tensor-to-scalar ratio. The relevant frequency is around $f \simeq 10^{-17} \mathrm{~Hz}$.
The 9-year WMAP gives $r<0.13$ at $95 \%$ confidence level.

- Direct detection gives


## Detection of circular polarization of PGW

- CMB gives

$$
|\Pi|>0.35\left(\frac{r}{0.05}\right)^{-0.6}
$$

where, $r$ is the tensor-to-scalar ratio. The relevant frequency is around $f \simeq 10^{-17} \mathrm{~Hz}$.
The 9-year WMAP gives $r<0.13$ at $95 \%$ confidence level.

- Direct detection gives

$$
\begin{aligned}
& \Pi \simeq 0.08\left(\Omega_{G W} / 10^{-15}\right)^{-1}(\text { SNR/5 }) \quad \text { (Seto.2006) } \\
& \Pi \simeq\left(\Omega_{G W} / 10^{-8}\right)(\text { SNR } / 5) \quad \text { (Taruya, Seto2007) }
\end{aligned}
$$

## Detection of circular polarization of PGW

- CMB gives

$$
|\Pi|>0.35\left(\frac{r}{0.05}\right)^{-0.6}
$$

where, $r$ is the tensor-to-scalar ratio. The relevant frequency is around $f \simeq 10^{-17} \mathrm{~Hz}$.
The 9-year WMAP gives $r<0.13$ at $95 \%$ confidence level.

- Direct detection gives

$$
\begin{aligned}
& \Pi \simeq 0.08\left(\Omega_{G W} / 10^{-15}\right)^{-1}(\text { SNR/5 }) \quad(\text { Seto. } 2006) \\
& \Pi \simeq\left(\Omega_{G W} / 10^{-8}\right)(\text { SNR } / 5) \quad(\text { Taruya }, \text { Seto2007 })
\end{aligned}
$$

where, $\Omega_{G W}$ is the density parameter of the GW and SNR is the signal to the nose ratio for $f \simeq 1 H z$

## Bispectrum and Non-gaussianity

## Bispectrum and Non-gaussianity

- The cubic action $S_{g}^{(3)}$

$$
S_{\mathrm{g}}^{(3)}=-\int d \eta H_{\mathrm{int}}(\eta)
$$

## Bispectrum and Non-gaussianity

- The cubic action $S_{g}^{(3)}$

$$
S_{\mathrm{g}}^{(3)}=-\int d \eta H_{\mathrm{int}}(\eta)
$$

- Then the 3-point correlation function can be computed by employing the in-in formalism,


## Bispectrum and Non-gaussianity

- The cubic action $S_{g}^{(3)}$

$$
S_{\mathrm{g}}^{(3)}=-\int d \eta H_{\mathrm{int}}(\eta)
$$

- Then the 3-point correlation function can be computed by employing the in-in formalism,

$$
\begin{aligned}
& \left\langle\psi_{k_{1}}^{s_{1}}(\eta) \psi_{k_{2}}^{s_{2}}(\eta) \psi_{k_{3}}^{s_{3}^{3}}(\eta)\right\rangle \\
& =-i \int_{\eta_{i}}^{\eta} d \eta^{\prime}\left\langle\left[\psi_{k_{1}}^{s_{1}}(\eta) \psi_{k_{2}}^{s_{2}}(\eta) \psi_{k_{3}}^{s_{3}}(\eta), H_{\text {int }}\left(\eta^{\prime}\right)\right]\right\rangle,
\end{aligned}
$$

## Bispectrum and Non-gaussianity

- In the de Sitter background, the 3-point correlation function reduces to,

$$
\begin{aligned}
& \left\langle\psi_{k_{1}}^{s_{1}}(0) \psi_{k_{2}}^{s_{2}}(0) \psi_{k_{3}}^{s_{3}}(0)\right\rangle \\
& \quad=(2 \pi)^{7} \delta^{3}\left(k_{1}+k_{2}+k_{3}\right) \frac{\Delta_{\mathrm{T}}^{4}}{2^{3} k_{1}^{3} k_{2}^{3} k_{3}^{3}} B_{k_{1}, k_{2}, k_{3}}^{s_{1} s_{2} s_{3}}
\end{aligned}
$$

## Bispectrum and Non-gaussianity

- In the de Sitter background, the 3-point correlation function reduces to,

$$
\begin{aligned}
& \left\langle\psi_{k_{1}}^{s_{1}}(0) \psi_{k_{2}}^{s_{2}}(0) \psi_{k_{3}}^{s_{3}}(0)\right\rangle \\
& \quad=(2 \pi)^{7} \delta^{3}\left(k_{1}+k_{2}+k_{3}\right) \frac{\Delta_{\mathrm{T}}^{4}}{2^{3} k_{1}^{3} k_{2}^{3} k_{3}^{3}} B_{k_{1}, k_{2}, k_{3}}^{s_{1} s_{2} s_{3}}
\end{aligned}
$$

where,$B_{k_{1} k_{2} k_{3}}^{s_{1} s_{2} s_{3}} \equiv \sum_{n=0}^{4} \delta_{n} \epsilon_{*}^{n} F_{n} I_{n}$

## Bispectrum and Non-gaussianity

- In the de Sitter background, the 3-point correlation function reduces to,

$$
\begin{aligned}
& \left\langle\psi_{k_{1}}^{s_{1}}(0) \psi_{k_{2}}^{s_{2}}(0) \psi_{k_{3}}^{s_{3}}(0)\right\rangle \\
& \quad=(2 \pi)^{7} \delta^{3}\left(k_{1}+k_{2}+k_{3}\right) \frac{\Delta_{\mathrm{T}}^{4}}{2^{3} k_{1}^{3} k_{2}^{3} k_{3}^{3}} B_{k_{1}, k_{2}, k_{3}}^{s_{1} s_{2} s_{3}}
\end{aligned}
$$

where,$B_{k_{1} k_{2} k_{3}}^{s_{1} s_{2} s_{3}} \equiv \sum_{n=0}^{4} \delta_{n} \epsilon_{*}^{n} F_{n} I_{n}$

- The high order spatial derivative terms do have contributions in bispectrum, but are suppressed by the factor $\varepsilon_{H L}$


## Bispectrum and Non-gaussianity

- In the de Sitter background, the 3-point correlation function reduces to,

$$
\begin{aligned}
& \left\langle\psi_{k_{1}}^{s_{1}}(0) \psi_{k_{2}}^{s_{2}}(0) \psi_{k_{3}}^{s_{3}}(0)\right\rangle \\
& \quad=(2 \pi)^{7} \delta^{3}\left(k_{1}+k_{2}+k_{3}\right) \frac{\Delta_{\mathrm{T}}^{4}}{2^{3} k_{1}^{3} k_{2}^{3} k_{3}^{3}} B_{k_{1}, k_{2}, k_{3}}^{s_{1} s_{2} s_{3}}
\end{aligned}
$$

where,$B_{k_{1} k_{2} k_{3}}^{s_{1} s_{2} s_{3}} \equiv \sum_{n=0}^{4} \delta_{n} \epsilon_{*}^{n} F_{n} I_{n}$

- The high order spatial derivative terms do have contributions in bispectrum, but are suppressed by the factor $\varepsilon_{H L}$
- The parity violation non-gaussianity contributions come from only 3-dimensional Chern-Simons operator $\omega(\Gamma)$


## Shape of the Bispectrum

## Shape of the Bispectrum

- Shape of the bispectrum: the dependence of $B_{k_{1} k_{2} k_{3}}^{S_{1} s_{2} S_{3}}$ on $k_{1}, k_{2}, k_{3}$


## Shape of the Bispectrum

- Shape of the bispectrum: the dependence of $B_{k_{1} k_{2} k_{3}}^{S_{1} s_{2} s_{3}}$ on $k_{1}, k_{2}, k_{3}$
- Three momentum configurations:

(a)

(b)

(c)
(a) equilateral,
(b) squeezed,
(c) folded


## Shape of the Bispectrum

- Shape of the bispectrum: the dependence of $B_{k_{1} k_{2} k_{3}}^{S_{1} s_{2} s_{3}}$ on $k_{1}, k_{2}, k_{3}$
- Three momentum configurations:

(a)

(b)

(c)
(a) equilateral,
(b) squeezed,
(c) folded





## Summary

## Summary

- In Hořava-Lifshitz gravity, the parity violation spatial derivative terms have contributions for PGW polarization and non-gaussianity


## Summary

- In Hořava-Lifshitz gravity, the parity violation spatial derivative terms have contributions for PGW polarization and non-gaussianity
- The 3-dimensional gravitational Chern-Simons operator $\omega(\Gamma)$ is the only one that violates the parity and meantime has non-vanishing contributions to the non-gaussianities of PGWs.


## Summary

- In Hořava-Lifshitz gravity, the parity violation spatial derivative terms have contributions for PGW polarization and non-gaussianity
- The 3-dimensional gravitational Chern-Simons operator $\omega(\Gamma)$ is the only one that violates the parity and meantime has non-vanishing contributions to the non-gaussianities of PGWs.
- The large polarization and non-gaussianities are expected if the adiabatic condition fails to hold. We still keep working on this subject.

Thanks!

