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Introduction

▶ Primordial gravitational waves (PGW) can propagate freely
from the very early universe, so one can see the very early
universe though PGW

▶ PGWs produce the TT, EE, BB and TE spectra of CMB, but
TB and EB spectra only for violating parity effects

▶ Parity violation effects have contributions to PGW
Polarization and Non-gaussianities.

▶ In general covariant Hořava-Lifshitz gravity, the Lorentz
symmetry is broken in the UV, and parity-violating operators
appear.
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Nonprojectable General Covariant HL Gravity

▶ Hořava-Lifshitz gravity is power-counting renormalizable by
breaking the general covariance symmetry in the UV, and
including only high-order spatial derivative operators.

▶ The metric can be written in ADM form
ds2 = −N2c2dt2 + gij

(
dxi +N idt

) (
dxj +N jdt

)
,

(i, j = 1, 2, 3),

where, N = N(x, t)→ Nonprojectable.Define ai = N,i /N

▶ Anisotropy scaling gives the different dimensions between
space and time

[dx] = [k]−1, [dt] = [k]−3,

[N i] = [c] =
[dx]

[dt]
= [k]2, [gij ] = [N ] = [1],

[Kij ] = [k]3, [Γi
jk] = [k], [Ri

jkl] = [k]2.



. . . . . . .

Nonprojectable General Covariant HL Gravity

▶ Hořava-Lifshitz gravity is power-counting renormalizable by
breaking the general covariance symmetry in the UV, and
including only high-order spatial derivative operators.

▶ The metric can be written in ADM form
ds2 = −N2c2dt2 + gij

(
dxi +N idt

) (
dxj +N jdt

)
,

(i, j = 1, 2, 3),

where, N = N(x, t)→ Nonprojectable.Define ai = N,i /N

▶ Anisotropy scaling gives the different dimensions between
space and time

[dx] = [k]−1, [dt] = [k]−3,

[N i] = [c] =
[dx]

[dt]
= [k]2, [gij ] = [N ] = [1],

[Kij ] = [k]3, [Γi
jk] = [k], [Ri

jkl] = [k]2.



. . . . . . .

Nonprojectable General Covariant HL Gravity

▶ Hořava-Lifshitz gravity is power-counting renormalizable by
breaking the general covariance symmetry in the UV, and
including only high-order spatial derivative operators.

▶ The metric can be written in ADM form

ds2 = −N2c2dt2 + gij
(
dxi +N idt

) (
dxj +N jdt

)
,

(i, j = 1, 2, 3),

where, N = N(x, t)→ Nonprojectable.Define ai = N,i /N

▶ Anisotropy scaling gives the different dimensions between
space and time

[dx] = [k]−1, [dt] = [k]−3,

[N i] = [c] =
[dx]

[dt]
= [k]2, [gij ] = [N ] = [1],

[Kij ] = [k]3, [Γi
jk] = [k], [Ri

jkl] = [k]2.



. . . . . . .

Nonprojectable General Covariant HL Gravity

▶ Hořava-Lifshitz gravity is power-counting renormalizable by
breaking the general covariance symmetry in the UV, and
including only high-order spatial derivative operators.

▶ The metric can be written in ADM form
ds2 = −N2c2dt2 + gij

(
dxi +N idt

) (
dxj +N jdt

)
,

(i, j = 1, 2, 3),

where, N = N(x, t)

→ Nonprojectable.Define ai = N,i /N

▶ Anisotropy scaling gives the different dimensions between
space and time

[dx] = [k]−1, [dt] = [k]−3,

[N i] = [c] =
[dx]

[dt]
= [k]2, [gij ] = [N ] = [1],

[Kij ] = [k]3, [Γi
jk] = [k], [Ri

jkl] = [k]2.



. . . . . . .

Nonprojectable General Covariant HL Gravity

▶ Hořava-Lifshitz gravity is power-counting renormalizable by
breaking the general covariance symmetry in the UV, and
including only high-order spatial derivative operators.

▶ The metric can be written in ADM form
ds2 = −N2c2dt2 + gij

(
dxi +N idt

) (
dxj +N jdt

)
,

(i, j = 1, 2, 3),

where, N = N(x, t)→ Nonprojectable.

Define ai = N,i /N

▶ Anisotropy scaling gives the different dimensions between
space and time

[dx] = [k]−1, [dt] = [k]−3,

[N i] = [c] =
[dx]

[dt]
= [k]2, [gij ] = [N ] = [1],

[Kij ] = [k]3, [Γi
jk] = [k], [Ri

jkl] = [k]2.



. . . . . . .

Nonprojectable General Covariant HL Gravity

▶ Hořava-Lifshitz gravity is power-counting renormalizable by
breaking the general covariance symmetry in the UV, and
including only high-order spatial derivative operators.

▶ The metric can be written in ADM form
ds2 = −N2c2dt2 + gij

(
dxi +N idt

) (
dxj +N jdt

)
,

(i, j = 1, 2, 3),

where, N = N(x, t)→ Nonprojectable.Define ai = N,i /N

▶ Anisotropy scaling gives the different dimensions between
space and time

[dx] = [k]−1, [dt] = [k]−3,

[N i] = [c] =
[dx]

[dt]
= [k]2, [gij ] = [N ] = [1],

[Kij ] = [k]3, [Γi
jk] = [k], [Ri

jkl] = [k]2.



. . . . . . .

Nonprojectable General Covariant HL Gravity

▶ Hořava-Lifshitz gravity is power-counting renormalizable by
breaking the general covariance symmetry in the UV, and
including only high-order spatial derivative operators.

▶ The metric can be written in ADM form
ds2 = −N2c2dt2 + gij

(
dxi +N idt

) (
dxj +N jdt

)
,

(i, j = 1, 2, 3),

where, N = N(x, t)→ Nonprojectable.Define ai = N,i /N

▶ Anisotropy scaling gives the different dimensions between
space and time

[dx] = [k]−1, [dt] = [k]−3,

[N i] = [c] =
[dx]

[dt]
= [k]2, [gij ] = [N ] = [1],

[Kij ] = [k]3, [Γi
jk] = [k], [Ri

jkl] = [k]2.



. . . . . . .

Nonprojectable General Covariant HL Gravity

▶ Hořava-Lifshitz gravity is power-counting renormalizable by
breaking the general covariance symmetry in the UV, and
including only high-order spatial derivative operators.

▶ The metric can be written in ADM form
ds2 = −N2c2dt2 + gij

(
dxi +N idt

) (
dxj +N jdt

)
,

(i, j = 1, 2, 3),

where, N = N(x, t)→ Nonprojectable.Define ai = N,i /N

▶ Anisotropy scaling gives the different dimensions between
space and time

[dx] = [k]−1, [dt] = [k]−3,

[N i] = [c] =
[dx]

[dt]
= [k]2, [gij ] = [N ] = [1],

[Kij ] = [k]3, [Γi
jk] = [k], [Ri

jkl] = [k]2.



. . . . . . .

Nonprojectable General Covariant HL Gravity

▶ Hořava-Lifshitz gravity is power-counting renormalizable by
breaking the general covariance symmetry in the UV, and
including only high-order spatial derivative operators.

▶ The metric can be written in ADM form
ds2 = −N2c2dt2 + gij

(
dxi +N idt

) (
dxj +N jdt

)
,

(i, j = 1, 2, 3),

where, N = N(x, t)→ Nonprojectable.Define ai = N,i /N

▶ Anisotropy scaling gives the different dimensions between
space and time

[dx] = [k]−1, [dt] = [k]−3,

[N i] = [c] =
[dx]

[dt]
= [k]2, [gij ] = [N ] = [1],

[Kij ] = [k]3, [Γi
jk] = [k], [Ri

jkl] = [k]2.



. . . . . . .

▶ To build the action, collect all scalars up to six order of [k],

[k]6 : KijK
ij , K2, R3, RRijR

ij , Ri
jR

j
kR

k
i , (∇R)

2 ,

(∇iRjk)
(
∇iRjk

)
,
(
aia

i
)2
R,

(
aia

i
) (
aiajR

ij
)
,(

aia
i
)3
, ai∆2ai,

(
ai i

)
∆R, ...,

[k]5 : KijR
ij , ϵijkRil∇jR

l
k, ϵ

ijkaial∇jR
l
k,

aiajK
ij , Kijaij ,

(
ai i

)
K,

[k]4 : R2, RijR
ij ,

(
aia

i
)2
,
(
ai i

)2
,
(
aia

i
)
aj j ,

aijaij ,
(
aia

i
)
R, aiajR

ij , Rai i,

[k]3 : ω3(Γ)→ Chern− Simons,

[k]2 : R, aia
i,

[k]1 : None,
[k]0 : γ0,
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Linearized Tensor Perturbations

▶ Tensor perturbation in the FRW universe

δgij = a2(η)hij(η, x), i, j = 1,2,3

with hii = 0 and ∂ihij = 0

▶ Two independent components only:
h+, h×
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▶ Expansion using circular polarization tensor

hij(η, x) =

∫
d3k

(2π)3

∑
s=R,L

psijψ
s
k(η)e

ikx,

where psij is the circular polarization tensor defined by

ikse
rsjpsij = kρsprsi

ρR = 1, ρL = −1

with the normalization condition

p∗isj pjs
′

i = 2δss
′
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Hořava-Lifshitz gravity with parity violation terms

▶ Action of HL gravity for tensor perturbaions

S(2)
gw =

1

2

∫
dηd3x

ζ2a2

2

{
(∂ηhij)

2 − (1−Ā+ α0
H
a
) (∂hij)

2

+ α3
eijk

a
(hmi,lh

l
k,mj − him,lh

ml
k,j) +

α4

a2
(
∂2hij

)2
+ α5

eijk

a3
∂2hil(∂

2hlk),j +
α6

a4
(
∂∂2hij

)2}
.
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▶ Under the circular polarization tensor basis

S(2)
gw =

∑
s=R,L

∫
dηd3k

ζ2a2

2

{
(ψ

′s
k )2 − (1− s̄+ α0H)k2(ψs

k)
2

+α3ρ
sk

3

a
(ψs

k)
2 + α4

k4

a2
(ψs

k)
2

+α5ρ
sk

5

a3
(ψs

k)
2 + α6

k6

a4
(ψs

k)
2

}
.
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▶ Field equation

Define vsk(η) ≡ aζψs
k(η), we obtain

vsk
′′(η) + [ω2

s(η)−
a′′

a
]vsk(η) = 0,

ω2
s(η) = (1− Ā−α0H)k2−α3ρ

sk
3

a
− α4

k4

a2
+α5ρ

sk
5

a3
− α6

k6

a4
.

With the de Sitter background, a = −1/(Hη).
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▶ Power spectrum of PGW

The two point correlation function⟨
ψs1
k1
(0)ψs2

k2
(0)

⟩
=

∆2
T

2k31H
2
(2π)5δ(k1 + k2).

∆2
T ≡

k3(|ψR
k |2 + |ψL

k |2)
(2π2)

=
H2

4π2

(
1 + 21δ21ε

2
HL +O(ε3HL)

)
,

▶ Degree of circular polarization

Π ≡
|ψR

k |2 − |ψL
k |2

|ψR
k |2 + |ψL

k |2

= 3δ1εHL +
(
17δ31 − 3δ2

)
ε3HL/2 +O(ε5HL).

εHL ≡ H/M∗ ≪ 1
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Detection of circular polarization of PGW

▶ CMB gives
|Π| > 0.35(

r

0.05
)−0.6

where, r is the tensor-to-scalar ratio. The relevant frequency
is around f ≃ 10−17Hz.
The 9-year WMAP gives r < 0.13 at 95% confidence level.

▶ Direct detection gives

Π ≃ 0.08(ΩGW /10−15)−1(SNR/5) (Seto.2006)

Π ≃ (ΩGW /10−8)(SNR/5) (Taruya, Seto2007)

where, ΩGW is the density parameter of the GW and SNR is
the signal to the nose ratio for f ≃ 1Hz
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Bispectrum and Non-gaussianity

▶ The cubic action S(3)
g

S
(3)
g = −

∫
dηHint(η).

▶ Then the 3-point correlation function can be computed by
employing the in-in formalism,⟨

ψs1
k1
(η)ψs2

k2
(η)ψs3

k3
(η)

⟩
= −i

∫ η

ηi

dη′
⟨
[ψs1

k1
(η)ψs2

k2
(η)ψs3

k3
(η),Hint(η

′)]
⟩
,
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Bispectrum and Non-gaussianity

▶ In the de Sitter background, the 3-point correlation function
reduces to,⟨

ψs1
k1
(0)ψs2

k2
(0)ψs3

k3
(0)

⟩
= (2π)7δ3(k1 + k2 + k3)

∆4
T

23k31k
3
2k

3
3

Bs1s2s3
k1,k2,k3

.

where ,Bs1s2s3
k1k2k3

≡
∑4

n=0 δnϵ
n
∗FnIn

▶ The high order spatial derivative terms do have contributions
in bispectrum, but are suppressed by the factor εHL

▶ The parity violation non-gaussianity contributions come from
only 3-dimensional Chern-Simons operator ω(Γ)
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Shape of the Bispectrum

▶ Shape of the bispectrum: the dependence of Bs1s2s3
k1k2k3

on
k1, k2, k3

▶ Three momentum configurations:

(a) (b) (c)

(a) equilateral, (b) squeezed, (c) folded
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Figure: Shapes of (k1k2k3)−1B+++
(GR) (k1, k2, k3) and

(k1k2k3)
−1B++−

(GR) (k1, k2, k3). All are normalized to unity in the
equilateral limit.
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Figure: Shapes of (k1k2k3)−1Bs1s2s3
(PV) (k1, k2, k3) for various spin

products: (a) +++; (b) ++−; (c) −−+; (d) −−−. All are
normalized to unity in the equilateral limit.
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Summary

▶ In Hořava-Lifshitz gravity, the parity violation spatial
derivative terms have contributions for PGW polarization and
non-gaussianity

▶ The 3-dimensional gravitational Chern-Simons operator ω(Γ)
is the only one that violates the parity and meantime has
non-vanishing contributions to the non-gaussianities of PGWs.

▶ The large polarization and non-gaussianities are expected if
the adiabatic condition fails to hold. We still keep working on
this subject.
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Thanks!
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