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» Parity violation effects have contributions to PGW
Polarization and Non-gaussianities.

> In general covariant Horava-Lifshitz gravity, the Lorentz
symmetry is broken in the UV, and parity-violating operators
appear.
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» To build the action, collect all scalars up to six order of [k],

[k]°: KiK', K R®, RR;RY, RIRLRF, (VR)®,
(ViRjk) (ViRjk) , (aiai)Q R, (a;a’) (a;a;R7),
(aiai)g aiA2ai,( ‘ )AR

[k]° : K jRY, ¢7*RyV,R., € azalV R,
aza]KJ Kja”, (ali) K,

[k]*: R, Rin”, (aiaz)2, (aii)z, (aiai) ajj,
aijaij, (aiai) R, aiajRij, Raii,

(k] : w3(T)— Chern — Simons,
[k]*: R, a;a’,

[k]' : None,

[K1° : 70,
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» Tensor perturbation in the FRW universe

8gij = a*(n)hij(n,x),i,j =1,2,3
with h% =0 and aj’hij =0

» Two independent components only:
hy, hy
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» Expansion using circular polarization tensor
dgk S 18 kX
hij(n, ) = (27)? Z pijtbr(me™,
s=R,L

where p7; is the circular polarization tensor defined by

iksersjp';j = kp°p;®
ph=1, pl=-1

with the normalization condition

xis, js' ss’
p:p;T =20
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» Action of HL gravity for tensor perturbaions

1 2 2 r H
s@) = 5/d S {(6 hij)? (1—A+aog)(3hz‘j)2

eljk m m Qy . 2
+ a5 —(h; g — Pima ) + — (0%hij)

i

+a5 02hd(82h )+ % (aa%j)Z}.



» Under the circular polarization tensor basis

50) = Zj/dfgca{wm (1= 54 a0 H)RA()?
s=R.,L
4

skd s\2 k S$\2
vmw—wm+m;wo

k6 9
+05P (Q/Jk) +046¥(¢ii) }
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» Field equation

Define vy(n) = a1y (1), we obtain

v () + [wi(n) = —Jvi(n) =0,
- K3 k* N kS
win) = (1 - AAonH)k:2~oz3p‘S; - oz4a—2+oz5p‘sa—3 — a6 g

With the de Sitter background, a = —1/(Hn).
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» Power spectrum of PGW
The two point correlation function
A2
(v O320) = gz () 0k + o).

RS + [0f )
(2m2)
H2

A%E

» Degree of circular polarization
[l — gl
[OR12 + [ 12
361emL + (1767 — 362) ey /2 + O(efiL).

II =

€H|_EH/M* <1
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» CMB gives

r .
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where,  is the tensor-to-scalar ratio. The relevant frequency
is around f ~ 101" Hz.
The 9-year WMAP gives r < 0.13 at 95% confidence level.

» Direct detection gives

I ~ 0.08(Qw/1075)"H(SNR/5) (Seto.2006)
M ~ (Qew/107%)(SNR/5) (Taruya,Seto2007)

where, Qg is the density parameter of the GW and SNR is
the signal to the nose ratio for f ~ 1Hz
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(v mem)
— i [ (i iz ) ). Hi (o))

i
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> In the de Sitter background, the 3-point correlation function

reduces to,
<1/)Z'i (0)952(0)e)5 (o)>

= (2m)7 83 (k1 + ko + k3)

4
818283

e
31.37.37.3 k1,ka,k3 "
2k kyky  FLrks
s1s9s3 _ x4 ¢
where B;f;ézz =) _oonerFnly
» The high order spatial derivative terms do have contributions
in bispectrum, but are suppressed by the factor e,

» The parity violation non-gaussianity contributions come from
only 3-dimensional Chern-Simons operator w(I")
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Summary

» In Horava-Lifshitz gravity, the parity violation spatial
derivative terms have contributions for PGW polarization and
non-gaussianity

» The 3-dimensional gravitational Chern-Simons operator w(I")
is the only one that violates the parity and meantime has
non-vanishing contributions to the non-gaussianities of PGWs.

> The large polarization and non-gaussianities are expected if
the adiabatic condition fails to hold. We still keep working on
this subject.
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