Lifshitz Spacetimes in the Horava-Lifshitz theory in 2+1 dimensions

Xinwen Wang Coorperate with Dr. Yang, Wang, Greenwald, Deng

> Department of Physics, Baylor University

> > UT Dallas

December 9, 2013

▲日 ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Outline

HL gravity

Our work and result

Conclusions and Future Work

Horava-Lifshitz gravity

- Horava-Lifshitz gravity is a new attempt towards quantization of gravity.
- Based on the perspective that Lorentz symmetry appear as an emergent symmetry at long distances, but can be fundamentally absent at high energies.
- As a result, higher order spatial derivative terms allowed in this theory, which changes gravity in UV region.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

Anisotropic Scaling

 The key point is that the system exhibits a strong anisotropic scaling between space and time,

$$\mathbf{x} \to \ell \mathbf{x}, \quad t \to \ell^{z} t,$$
 (1)

which makes the theory power-counting renormalizable.

Anisotropic Lifshitz-type scaling has played a central role in the new approach to holographic dual between HL gravity and Lifshitz-type field theory. Lifshitz spacetime in relativistic gravity

- Lifshitz spacetime solution is a very interesting topic in relativistic gravity.
- Lifshitz spacetimes is invariant under anisotropic scale transformation.
- Obtain Lifshitz spacetime as solutions of the field equations of General Relativity coupled to some matter content (S. Kachru, X. Liu, M. Mulligan, PRD 78,106005(2008))

Question

In relativistic gravity theory, the coupling to matter is necessary, as the Lifshitz spacetime with z ≠ 1 does not solve the Einstein equations in the vacuum.(T. Griffin, P. Horava...PRL 110,081602(2013))

Since HL theory is invariant under the anisotropic scaling, it is natural to ask: can we find Lifshitz solution in the framework of HL theory?

General action of the HL theory

The general action of the HL theory without the projectability condition in (2+1)-dimensional spacetimes is given by(T. Sotiriou....PRD83,124021(2011))

$$S = \zeta^{2} \int dt d^{2} x N \sqrt{g} \Big(\mathcal{L}_{K} - \mathcal{L}_{V} + \zeta^{-2} \mathcal{L}_{M} \Big), \qquad (2)$$

where $g = \det(g_{ij}), \, \zeta^2 = 1/(16\pi G)$, and

$$\mathcal{L}_{\mathcal{K}} = \mathcal{K}_{ij}\mathcal{K}^{ij} - \lambda \mathcal{K}^{2},$$

$$\mathcal{L}_{V} = \gamma_{0}\zeta^{2} + \gamma_{1}\mathcal{R} + \frac{1}{\zeta^{2}} \Big[\gamma_{2}\mathcal{R}^{2} + \gamma_{3}\Delta\mathcal{R} + \gamma_{4}\mathcal{R}\left(a^{i}a_{i}\right) \Big] + \beta_{0}a_{i}a^{i} + \frac{1}{\zeta^{2}} \Big[\beta_{1}\left(a_{i}a^{i}\right)^{2} + \beta_{2}\left(a^{i}_{i}\right)^{2} + \beta_{3}\left(a_{i}a^{i}\right)a^{i}_{j} + \beta_{4}a^{ij}a_{ij} \Big],$$

$$(3)$$

◆□ → ◆□ → ∢ 三 → ∢ □ → ◆□ →

Metric

 spherically symmetric static vacuum spacetimes without the projectability condition in (2 + 1)-dimensional spacetimes

$$ds^{2} = -r^{2z}t^{2}(r)dt^{2} + \frac{g^{2}(r)}{r^{2}}dr^{2} + r^{2}d^{2}\theta, \qquad (4)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Equation of motion

 $S_g = 2\pi\zeta^2 \int dt dr \mathcal{L}_g(r), \tag{5}$

where

$$\mathcal{L}_{g}(r) = N\sqrt{(g)} (\mathcal{L}_{K} - \mathcal{L}_{V})$$

$$= gf\mathcal{L}_{V}$$
(6)

To get the Equations of Motion:

$$\sum_{j=0}^{3} (-1)^{j} \cdot \frac{d^{j}}{dr^{j}} \frac{\partial \mathcal{L}_{g}}{\partial \left(f^{(j)}(r)\right)} = 0$$

$$\sum_{j=0}^{3} (-1)^{j} \cdot \frac{d^{j}}{dr^{j}} \frac{\partial \mathcal{L}_{g}}{\partial \left(g^{(j)}(r)\right)} = 0$$
(8)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Equation of motion

 $\frac{r^2}{g^2} = \frac{r^2}{\ell^2} - \mathcal{D},\tag{9}$

where

$$\mathcal{D} \equiv \frac{\sqrt{C_1}}{\gamma_1^2 (\beta_0 - 2\gamma_1)} \left(\frac{r}{g}\right)^{\frac{\beta_0}{(\beta_0 - \gamma_1)}} \\ \times \left(\sqrt{\gamma_1^2 + 2\beta_0 g^2 \Lambda} - \gamma_1\right)^{\frac{\gamma_1}{(\beta_0 - \gamma_1)}} \\ \times \left(\gamma_1^2 + (\beta_0 - \gamma_1) \sqrt{\gamma_1^2 + 2\beta_0 g^2 \Lambda}\right), \\ \ell^2 \equiv -\frac{\gamma_1^2 (\beta_0 - 2\gamma_1)}{2\Lambda (\beta_0 - \gamma_1)^2}.$$
(10)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

IR Limit

• Coupling constants $\gamma_{2,3}$ and $\beta_{1,\dots,4}$ are negligible.

If $\beta_0 = 0$, in this case, we find that

$$\mathcal{D} = \frac{\sqrt{C_1}}{2\gamma_1^2}, \quad \ell^2 = \frac{\gamma_1}{\Lambda}.$$
 (11)

Then, we obtain that

$$g^{2} = \frac{r^{2}}{-M + \frac{r^{2}}{\ell^{2}}},$$

$$\hat{f}^{2} = \frac{1}{r^{4}} \left(-M + \frac{r^{2}}{\ell^{2}}\right), \qquad (12)$$

where

$$\hat{f} \equiv r^{z-2} f. \tag{13}$$

The corresponding metric takes the familiar form,

$$ds^{2} = -N^{2}dt^{2} + N^{-2}dr^{2} + r^{2}d\phi^{2}, \qquad (14)$$

Intermediate Region

we consider the solutions

$$f(r) = f_0, \quad g(r) = g_0,$$
 (15)

the spacetime should exhibit Lifshitz scaling

$$g_{0}^{2} = \frac{1}{\zeta^{2} [z\beta_{0} - (z-1)\gamma_{1}]} \left\{ 2z^{2}\beta_{2} - 2z^{3}\beta_{1} - (z-1) [4\gamma_{2} - z[z\beta_{3} + \beta_{4} + (1+z)\gamma_{3}]] + z[2 + (z-1)z]\gamma_{4} \right\} > 0,$$
(16)

UV Limit

• Coupling constants β_0 , γ_1 and Λ are negligible.

Consider the solutions,

$$\hat{f}(r) = \hat{f}_0 r^P, \quad g(r) = g_0 r^Q,$$
 (17)
if $\gamma_4 = \beta_{1,2,3,4} = 0$
 $(Q, P) = (1,0)$ (18)

it is nothing but a AdS solution.

Conclusions and Future Work

- In IR Limit, we get Schwarzschild Anti-de Sitter solution.
- ► In Intermediate Region, we get Lifshitz solution.
- In UV Limit, we get several solutions(including AdS solution).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Connect these three regions!

Thanks!