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À Hořava-Lifshitz Theory of Quantum Gravity
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I. Hořava-Lifshitz (HL) Theory of Quantum Gravity

A. Why Quantum Gravity?

• Quantum theory provides a general framework for ALL

theories, except for gravity. The universal coupling of

gravity to all forms of energy makes it plausible that

gravity should be implemented in such a framework, too.

• At the singularities of the Big Bang and black holes, all

the physics laws become invalid. Around these singular

points, space-time curvatures become so high, Planck

physics is highly involved. So, it is expected that quantum

effects of gravity become important, and should be taken

into account.



I. HL Gravity (Cont.)

Perspectives:

• Construct a theory of quantum gravity in the

framework of quantum field theory ,

• Take the metric as the fundamental variables ,

• Lorentz symmetry appears only as an emergent

symmetry at low energies, but can be

fundamentally absent at high energies -



I. HL Gravity (Cont.)

• Breaking of the Lorentz symmetry is accomplished by the

anisotropic scaling between time and space,

t→ b−zt, xi→ b−1xi, (i = 1,2,3),

similar to the Lifshitz scalar field (E.M. Lifshitz, Zh. Eksp. Teor. Fiz.

11 (1941), 255; 269).
• Power-counting renormalizabe,

z ≥ 3.



I. HL Gravity (Cont.)

Two Basic Assumptions:

• The space-times possess the

foliation-preserving diffeomorphisms,

t→ f(t), xi→ ξi(t, x),

denoted by Diff(M,F).
• The field equations are second-order of time

derivatives, and sixth-order of spatial

derivatives.



I. HL Gravity (Cont.)

• Once the general covariance is broken, the number of

independent coupling constants get dramatically

increased, N > 70 [Zhu, Shu, Wu & AW, PRD85 (2012) 044053]. To

reduce the number, Horava imposed two additional

conditions.

• Projectability: The lapse function is a function of t only,

N = N(t).

This it is preserved by Diff(M,F).



I. HL Gravity (Cont.)

• Detailed Balance:

Lg = LK − L(V,D),

LK = ζ2(KijK
ij − λK2),

where the potential L(V,D) is given by a superpotential

Wg defined only on the leaves of t = Constant,

Wg =
1

w2

∫
Σ

ω3(Γ) +
1

µ2 (R− 2Λ)

,



I. HL Gravity (Cont.)

L(V,D) = EijGijklEkl, Eij =
1
√
g

δWg

δgij
,

Gijkl =
1

2
(gikgjl + gilgjk)− λgijgkl,

(1)

λ: a coupling constant. Then,

N = 5.

— Minimal HL Gravity.



I. HL Gravity (Cont.)

Major Challenges:

• The Minkowski space is not stable [P. Horava, PRD79 (2009)

084008], even without the detailed balance condition (but still

with N = N(t)) [T. Sotiriou, M. Visser & S. Weinfurtner, JHEP 10 (2009) 033;

AW, R. Maartens, PRD81 (2010) 024009].

• Newtonian limit does not exist, because the cosmological

constant is strictly negative [H. Lü, J. Mei & C.N. Pope, PRL103 (2009)

091301],

GN ∝
√
−Λ.



I. HL Gravity (Cont.)

• It becomes strongly coupled:

– even with N = N(t, x) (but without ai terms) [C.

Charmousis, G. Niz, A. Padilla, and P.M. Saffin, JHEP 08 (2009) 070; D. Blas,

O. Pujolas & S. Sibiryakov, JHEP 10 (2009) 029];

– even without the detailed balance condition but with

N = N(t) [D. Blas, O. Pujolas & S. Sibiryakov, JHEP 10 (2009) 029; K.

Koyama & F. Arroja, JHEP 03 (2010) 061; AW & Q. Wu, PRD83 (2011)

044025].



I. HL Gravity (Cont.)

To overcome the above problems, various models have been

proposed, including

• The healthy extension (D. Blas, O. Pujolas & S. Sibiryakov, PRL104

(2010) 181302; PLB688 (2010) 350; JHEP04 (2011) 018):

Sg =
∫
dtd3xN

√
gLg,

Lg = a1KijK
ij + a2K

2 + a3R
3 + a4(aia

i)3 + ...︸ ︷︷ ︸
(N ' 70)



I. HL Gravity (Cont.)

• All the problems mentioned above are resolved.

• Consistent with solar system tests [D. Blas and H.

Sanctuary, PRD84 (2011) 064004; B. Audren, D. Blas, J. Lesgourgues, and S.

Sibiryakov, arXiv:1305.0009].

• Consistent with cosmology [T. Kobayashi, Y. Urakawa and M.

Yamaguchi, JCAP 1004, 025 (2010); R.-G. Cai, B. Hu, H.-B. Zhang, PRD83 (2011)

084009; E.G.M. Ferreira, R. Brandenberger, PRD86 (2013) 043514].



I. HL Gravity (Cont.)

• The second model [P. Horava & C.M. Melby-Thompson, PRD82

(2010) 064027; AW, Y. Wu, PRD83 (2011) 044031; A.M. da Silva, CQG28 (2011)

055011; Y.-Q. Huang, AW, PRD83 (2011) 104012]:

– An extra U(1) symmetry

U(1) n Diff(M, F),

realized by introducing a U(1) gauge field A and a

Newtonian prepotential ϕ.

– The number of independent coupling constants,

N = 13.



I. HL Gravity (Cont.)

• With this extra symmetry, spin-0 gravitons are absent and

the theory has the same degree of freedom as GR.

• All the problems mentioned above, including instability,

ghosts, and strong coupling, are resolved.

• Consistent with cosmological observations [Y.-Q. Huang, AW,

Q. Wu, JCAP10 (2012) 010; Y.-Q. Huang, AW, PRD86 (2012) 103523; Y.-Q.

Huang, AW, R. Yousefi, T. Zhu, PRD88 (2013) 023523].



I. HL Gravity (Cont.)

• The third model [T. Zhu, Q. Wu, AW, F.-W. Shu, PRD84 (2011) 101502

(R); T. Zhu, F.-W. Shu, Q. Wu & AW, PRD (2012); K. Lin, S. Mukohyama, AW, T.

Zhu, arXiv:1310.6666]:

– Non-projectable N = N(t, x)

– Enlarged symmetry,

U(1) n Diff(M, F).

– Detailed balance condition softly broken, so that

N = 15.



I. HL Gravity (Cont.)

• All the problems mentioned above, including instability,

ghosts, and strong coupling, are resolved.

• Consistent with cosmology [T. Zhu, Y.-Q. Huang, AW, JHEP01 (2013)

138].

• In the following, we shall study the post-Newtonian

approximations in the second and third models and work

out the PPN parameters in terms of the coupling

constants of the models.



II. Universal Coupling with Matter

• The equivalence principle requires that coupling to matter

should be universal.

• In the ADM decompositions, (N,N i, gij), the shift vector

N i is not U(1) invariant, but

Ñ i ≡ N i +Ngij∇jϕ.

• We propose a universal coupling of matter with the HL

gravity via (
Ñ, Ñ i, g̃ij

)
,



II. Universal Coupling with Matter (Cont.)

where

Ñ ≡ F (σ)N, g̃ij ≡ Ω2(σ)gij, g̃ij ≡ Ω−2(σ)gij, (2)

σ: a scalar, wich is invariant under both U(1) and Diff(M,F ),

σ ≡
A−A
N

,

A ≡ −ϕ̇+N i∇iϕ+
1

2
N
(
∇iϕ

)
(∇iϕ) .

— Note that in general F (σ) and Ω(σ) will depend on matter

species, but universality may emerge at low energies.



II. Universal Coupling with Matter (Cont.)

• We assume that such a mechanism exists, and matter

propagates in the 4D space-time,

ds2 = γµνdx
µdxν

= −Ñ2dt2 + g̃ij
(
dxi + Ñ idt

) (
dxj + Ñjdt

)
. (3)

• The matter is described by

SM =
∫
d4x
√
−γLM(γµν;ψn), (4)

ψn denotes collectively the matter fields, and

Tµν =
1
√
−γ

δ
(√
−γLM

)
δγµν

. (5)



III. Post-Newtonian Approximations

• We assume the 4D metric takes the form,

γµν = ηµν + hµν,

ηµν = diag. (−1,1,1,1), and

h00 ∼ O(2) +O(4),

h0j ∼ O(3),

hij ∼ O(2) +O(4),

O(n) ≡ O (vn), v: 3-velocity of the fluid.



III. Post-Newtonian Approximations (Cont.)

• Using the gauge freedom, it can be shown that γµν can
be cost in the form,

γ00 = −1 + 2U − 2βU2 − 2ξΦW

+ (2 + 2γ + α3 + ζ1 − 2ξ) Φ1

+2 (1 + 3γ − 2β + ζ2 + ξ) Φ2

+2 (1 + ζ3) Φ3 + 2 (3γ + 3ζ4 − 2ξ) Φ4

− (ζ1 − 2ξ)A + ζBB,

γ0i = −
1

2
(3 + 4γ + α1 − α2 + ζ1 − 2ξ)Vi

−
1

2
(1 + α2 − ζ1 + 2ξ)Wi,

γij = (1 + 2γU) δij + h(4)
ij , (6)

β, γ, ξ, ζi, αj and ζB: the PPM parameters to characterize the

post-Newtonian limits in the HL theory, and



III. Post-Newtonian Approximations (Cont.)

U ≡
∫
ρ(x′, t)

|x− x′|
d3x′, χ ≡ −

∫
ρ(x′, t)|x− x′|d3x′, Vj ≡

∫
ρ(x′, t)v′j
|x− x′|

d3x′,

Wj ≡
∫
ρ(x′, t)v′ · (x− x′)(x− x′)j

|x− x′|3
d3x′, Uij ≡

∫
ρ(x′, t)(x− x′)i(x− x′)j

|x− x′|3
d3x′,

ΦW ≡
∫
ρ′ρ′′

x− x′

|x− x′|3
×
(
x′ − x′′

|x− x′′|
−

x− x′′

|x′ − x′′|

)
d3x′d3x′′,

Φ1 ≡
∫

ρ′v′2

|x− x′|
d3x′, Φ2 ≡

∫
ρ′U ′

|x− x′|
d3x′, Φ3 ≡

∫
ρ′Π′

|x− x′|
d3x′,

Φ4 ≡
∫

p′

|x− x′|
d3x′, A ≡

∫
ρ′[v′ · (x− x′)]2

|x− x′|3
d3x′,

B ≡
∫

ρ′

|x− x′|
(x− x′) ·

dv′

dt
d3x′.



III. Post-Newtonian Approximations (Cont.)

— The projectable case N = N(t): The free parameters

of the model are

(λ, g1, κ, a1, a2) ,

appearing in the expressions,

LK = KijK
ij − λK2, LIRV = g1R,

F = 1− a1σ, Ω = 1− a2σ,

κ ≡ G/GN .

G ≡ 1/(8πM2
∗ ), GN : the Newtonian constant.



III. Post-Newtonian Approximations (Cont.)

In terms of these coupling constants, the PPN parameters are

given by,

γ = κa1 −
a2

a1
, β =

1 + κa1

2
,

α1 = 4

(κ − 1)− (a1 − 1)κ +
a2

a1

 ,
α2 = (κ − 1) +

(
1− 3λ

1− λ

)
(a1 − 1)2κ,

ζ1 = −ζB =
(

1− 3λ

1− λ

)
a1(a1 − 1)κ,

α3 = ξ = ζ2 = ζ3 = ζ4 = 0.



III. Post-Newtonian Approximations (Cont.)

For
|a1 − 1| < 10−5, |a2| < 10−5, |κ − 1| < 10−5,

(κ − 1),

∣∣∣∣(a1 − 1)2

1− λ

∣∣∣∣ < 10−7,

the constraints from all the solar system tests, we find that
γ = 1 + (2.1± 2.3)× 10−5,

β = 1 + (−4.1± 7.8)× 10−5,

α1 < 10−4, α2 < 4× 10−7, α3 < 4× 10−20,

ξ < 10−3, Γ < 1.5× 10−3, ζ1 < 2× 10−2,

ζ2 < 4× 10−5, ζ3 < 10−8, ζ4 < 6× 10−3,

Γ ≡ 4β − γ − 3−
10

3
ξ − α1 +

2

3
α2 −

2

3
ζ1 −

1

3
ζ2,

are satisfied.



III. Post-Newtonian Approximations (Cont.)

In particular, choosing

a1 = 1, a2 = 0, g1 = −1,

we find that

γ = β = 1, α1 = α2 = α3 = ξ = 0,

ζ1 = ζ2 = ζ3 = ζ4 = ζB = 0,

which are precisely the results obtained in GR.



III. Post-Newtonian Approximations (Cont.)

— The nonprojectable case N = N(t, ~x): The free

parameters of the model are

(λ, γ1, β0, κ, σ1, σ2, a1, a2) ,

appearing in the expressions,

LK = KijK
ij − λK2,

LIRV = γ1R− β0aiai − σ(σ1a
iai + σ2∇iai),

F = 1− a1σ, Ω = 1− a2σ,

κ ≡ G/GN .

G ≡ 1/(8πM2
∗ ), GN : the Newtonian constant.



III. Post-Newtonian Approximations (Cont.)

— The PPN parameters were found explicitly in terms of the

coupling constants [arXiv:1310.6666], which will not be given here,

but simply note that by properly choosing them, the solar system

tests can be easily satisfied.

— In particular, the PPN parameters take exactly their GR values

in the cases:

(i) a1 = κ = 1, σ2 = 0,

(ii) σ2 = 4(1− a1), β0 = −2(γ1 + 1).



IV. Conclusions

• The models with U(1) symmetry for both of the

projectable and nonprojectbale cases satisfy all

the solar system tests, carried out so far.
• Note that only few theories of gravity pass all of

these tests, including GR, Brans-Dicke

(scale-tensor) theory, and Einstein-aether

(vector-tensor) theory.
• But, they are all effective low-energy theories,

and are not (perturbatively) renormalizable.



IV. Conclusions (Cont.)

• On the other hand, by construction, the HL

theory is power-accounting renormalizable, and

recent studies of quantization in (2+1)D

spacetimes indicated that it might be indeed

renormalizble [C. Anderson, S. Carlip, J.H. Cooperman, P. Horava, R.

Kommu, P.R. Zulkowski, Phys. Rev. D85 (2012) 044027].
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