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Gravitational Collapse in General Relativity

At the end of the life of a star
I White dwarf 7−→ electron degeneracy pressure due to the

Pauli exclusion principle (Chandrasekhar limit)
I Neutron star 7−→ neutron degeneracy pressure mediated

by the strong force (Tolman-Oppenheimer-Volkoff limit)
I Black holes 7−→ Nothing can stop it from happening! (At

least within GR).

In a theory of quantum gravity, it is expected that the formation
of singularities in a gravitational collapse is prevented by
short-distance quantum effects. It is not like the singularity
inside the horizon is replaced with an ultra dense object.
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Gravitational Collapse in General Relativity

I Within the framework of general relativity, the dynamical
collapse of a homogeneous spherical dust cloud under its
own gravity was first considered by Datt (1938) and
Oppenheimer and Snyder (1939). It was shown that it
always leads to the formation of singularities.

I The spacetime is divided into two regions, the internal M−

and external M+, where M− = {xµ : r < R(t)}, and
M+ = {xµ : r > R(t)}. The surface r = R(t) is denoted
by Σ.
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Hořava-Lifshitz
Theory with
Projectability

Gravitational
Collapse in
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Gravitational Collapse in General Relativity

In general relativity, there are two common approaches for such
studies.

I Israel’s junction conditions (1966) - relies on the Gauss
and Codazzi equations together with the Lanczos
equations. An advantage of this method is that it can be
applied to the case where the coordinate systems inside
and outside a collapsing body are different.

I Taubs junction conditions (1980) - relies on distribution
theory. In this approach, although the coordinate systems
inside and outside the collapsing stars are taken to be the
same, the null-hypersurface case can be easily included.
Taub’s approach was widely used to study colliding
gravitational waves and other related issues in general
relativity.
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Hořava-Lifshitz Theory with Projectability

The HL theory with the projectability condition N = N(t), an
arbitrary coupling constant λ and the enlarged symmetry.
The fundamental variables are (N, Ni, gij, A, ϕ), which
transform under Diff(M, F ) as

δN = ζ
k
∇kN + Ṅf +Nḟ ,

δNi = Nk∇iζ
k +ζ

k
∇kNi +gikζ̇

k + Ṅif +Ni ḟ ,

δgij = ∇iζj +∇jζi + f ġij,

δA = ζ
i
∂iA+ ḟ A+ f Ȧ,

δϕ = f ϕ̇ +ζ
i
∂iϕ, (1)

and under the local U(1) symmetry as

δαA = α̇−Ni
∇iα, δαϕ =−α,

δαNi = N∇iα, δαgij = 0 = δαN, (2)

where α is the generator of the U(1) symmetry.
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Hořava-Lifshitz Theory with Projectability

The total action is given by

S = ζ
2
∫

dtd3xN
√

g
(
LK +Lϕ +LA +Lλ −LV

+ζ
−2LM

)
, (3)

where g = detgij, and

LK = KijKij−λK2,

Lϕ = ϕG ij
(

2Kij +∇i∇jϕ

)
,

LA =
A
N

(
2Λg−R

)
,

Lλ =
(
1−λ

)[(
∇

2
ϕ
)2

+2K∇
2
ϕ

]
. (4)

Here the coupling constant Λg, which acts like a 3-dimensional
cosmological constant, has the dimension of (length)−2. The
Ricci and Riemann terms all refer to the three-metric gij.
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Hořava-Lifshitz Theory with Projectability

Kij is the extrinsic curvature, and Gij is the 3-dimensional
“generalized” Einstein tensor defined by

Kij =
1

2N
(−ġij +∇iNj +∇jNi) ,

Gij = Rij−
1
2

gijR+Λggij. (5)

LV denotes the potential part of the action given by

LV = ζ
2g0 +g1R+

1
ζ 2

(
g2R2 +g3RijRij)

+
1

ζ 4

(
g4R3 +g5R RijRij +g6Ri

jR
j
kRk

i

)
+

1
ζ 4

[
g7R∇

2R+g8
(
∇iRjk

)(
∇

iRjk)] , (6)

which preserves the parity, where the coupling constants
gs (s = 0,1,2, . . .8) are all dimensionless. LM is the matter
Lagrangian density.
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Gravitational Collapse in Hořava-Lifshitz Theory

We study gravitational collapse of a spherical star with a finite
radius in the HL theory with the projectability condition, an
arbitrary coupling constant λ , and the extra U(1) symmetry.

For the study of a collapsing star with a finite radius in the HL
theory, we follow Taub’s approach, because

I We do not know how to generalize the Lanczos equations
to the HL theory.

I It turns out to be more convenient when dealing with
higher-order derivatives.

I In contrast to the case of general relativity, the foliation
structure of the HL theory implies that the coordinate
systems inside and outside of the collapsing star are
unique.
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Gravitational Collapse in Hořava-Lifshitz Theory

The ADM variables for spherically symmetric spacetimes with
the projectability condition take the forms

N = 1,

Ni = δ
i
reµ(r,t)−ν(r,t),

gijdxidxj = e2ν(r,t)dr2 + r2dΩ
2, (7)

in the spherical coordinates xi = (r,θ ,φ), where
dΩ2 ≡ dθ 2 + sin2

θ dφ 2. The diagonal case Ni = 0 corresponds
to µ(t,r) =−∞. On the other hand, using the U(1) gauge
freedom, without loss of generality, we set

ϕ = 0, (8)

which uniquely fixes the gauge.
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Gravitational Collapse in Hořava-Lifshitz Theory

We consider the gravitational collapse of a spherical cloud
consisting of a homogeneous and isotropic perfect fluid,
described by the FLRW universe,

ds2 =−dt̄2 +a2(t̄)
(

dr̄2

1− kr̄2 + r̄2d2
Ω

)
,

where k = 0,±1. Letting r = a(t̄)r̄, t = t̄, the corresponding
ADM variables take the form (7) with N− = 1, and

ν
−(t,r) = −1

2
ln
(

1− k
r2

a2(t)

)
,

µ
−(t,r) = ln

(
−ȧ(t)r√

a2(t)− kr2

)
, (9)

where ȧ≤ 0 for a collapsing cloud.
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Gravitational Collapse in Hořava-Lifshitz Theory

R
0

K
+

t

r

8

=

Figure: The evolution of the surface of the collapsing star for λ = 1

and Λ > 0, given by R(t) = R0 cosh
2
3

(√
3Λ

2 (t0− t)
)

. At the moment

t = t0, the star collapses to its minimal radius R(t0) = R0, at which
the extrinsic curvature K+ becomes unbounded, while the
four-dimensional Ricci scalar remains finite.
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Gravitational Collapse in Hořava-Lifshitz Theory

R0

r R(t)

ttt s0

Figure: The evolution of the surface of the collapsing star for λ = 1

and Λ < 0, given by R(t) = R0 cos
2
3

(√
3|Λ|
2 (t− t0)

)
. The star starts

to collapse at a time t = ti ≥ t0. At the later time t = ts, at which
R(ts) = 0, the star collapses and a central singularity is formed.
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Gravitational Collapse in Hořava-Lifshitz Theory

K
+ 8

=

r

t 0 t

Figure: The evolution of the surface of the collapsing star for λ = 1
and Λ = 0, given by R(t) = R0(t0− t)

2
3 . At the moment t = ti ≤ t0,

the star starts to collapse until the moment t = t0, at which we have
R(t0) = 0, whereby a central singularity is formed.



Gravitational
Collapse in HL

Theory

V H Satheeshkumar

Outline of the Talk

Gravitational
Collapse in General
Relativity
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Summary of Results

I We have studied gravitational collapse of a spherical cloud
of fluid with a finite radius in the framework of the
nonrelativistic general covariant theory of HL gravity with
the projectability condition and an arbitrary coupling
constant λ .

I Using distribution theory, we have developed the general
junction conditions for such a collapsing spherical body,
under the minimal requirement that the junctions should
be mathematically meaningful in the sense of generalized
functions.

I As one of the simplest applications, we have studied a
collapsing star that is made of a homogeneous and
isotropic perfect fluid, while the external region is
described by a stationary spacetime.
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Summary of Results

I For the case of a homogeneous and isotropic dust fluid (a
perfect fluid with vanishing pressure), we have found
explicitly the space-time outside of the collapsing sphere.
In particular, in the case λ = 1, the external spacetimes are
described by the Schwarzschild (anti-) de Sitter solutions,
written in Painlevé-Gullstrand coordinates.

I It is remarkable that the collapse of a homogeneous and
isotropic dust to a Schwarzschild black hole, studied by
Oppenheimer and Snyder in general relativity is a
particular case.

I In the case λ 6= 1, the space-time describing the outside of
the homogeneous and isotropic dust fluid is not
asymptotically flat. Therefore, to obtain an asymptotically
flat space-time outside of a collapsing dust fluid, it must
not be homogeneous and/or isotropic.
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Summary of Results

However, there are fundamental differences.
I First, in general relativity a thin shell does not necessarily

appear on the surface of the collapsing sphere, while in the
current case we have shown that such a thin shell must
exist.

I Second, in general relativity, because of the local
conservation of energy of the collapsing body, the energy
density of the dust fluid is inversely proportional to the
cube of the radius of the fluid, while in the current case it
remains a constant, as the conservation law is global and
the energy of the collapsing star is not necessarily
conserved locally.



Gravitational
Collapse in HL

Theory

V H Satheeshkumar

Outline of the Talk

Gravitational
Collapse in General
Relativity
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Future Directions

Next, we would like to
I Study gravitational collapse of more general fluids, such

as perfect fluids with different equations of state, or
anisotropic fluids with or without heat flows.

I Generalize the junction conditions of a collapsing star to
other versions of Hořava-Lifshitz gravity.

I Study the collapse of more realistic stars i.e., Kerr type
exterior axially spherically symmetric rotating vacuum
spacetime.
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Thanks!

I would like to thank my advisor and co-author
Dr. Anzhong Wang

and my other collaborators
Dr. Jonatan Lenells and Jared Greenwald.

Thanks to the organizers of this symposium for the opportunity.

Thank you for your attention!
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