

f(T) Gravity and Cosmology

Emmanuel N. Saridakis

Physics Department, National and Technical University of Athens, Greece
Physics Department, Baylor University, Texas, USA

Goal

- We investigate cosmological scenarios in a universe governed by torsional modified gravity
- Note:

A consistent or interesting cosmology is not a proof for the consistency of the underlying gravitational theory

Talk Plan

- 1) Introduction: Gravity as a gauge theory, modified Gravity
- 2) Teleparallel Equivalent of General Relativity and $f(T)$ modification
- 3) Perturbations and growth evolution
- 4) Bounce in $f(T)$ cosmology
- 5) Non-minimal scalar-torsion theory
- 6) Black-hole solutions
- 7) Solar system and growth-index constraints
- 8) Conclusions-Prospects

Introduction

- Einstein 1916: General Relativity:
energy-momentum source of spacetime Curvature Levi-Civita connection: Zero Torsion
- Einstein 1928: Teleparallel Equivalent of GR: Weitzenbock connection: Zero Curvature
- Einstein-Cartan theory: energy-momentum source of Curvature, spin source of Torsion
[Hehl, Von Der Heyde, Kerlick, Nester Rev.Mod.Phys.48]

Introduction

- Gauge Principle: global symmetries replaced by local ones:
The group generators give rise to the compensating fields
It works perfect for the standard model of strong, weak and E / M interactions
$S U(3) \times S U(2) \times U(1)$
- Can we apply this to gravity?

Introduction

- Formulating the gauge theory of gravity (mainly after 1960):
- Start from Special Relativity
\Rightarrow Apply (Weyl-Yang-Mills) gauge principle to its Poincarégroup symmetries
\Rightarrow Get Poinaré gauge theory:
Both curvature and torsion appear as field strengths
- Torsion is the field strength of the translational group
(Teleparallel and Einstein-Cartan theories are subcases of Poincaré theory) [Blagojevic, Hehl, Imperial College Press, 2013]

Introduction

- One could extend the gravity gauge group (SUSY, conformal, scale, metric affine transformations) obtaining SUGRA, conformal, Weyl, metric affine gauge theories of gravity
- In all of them torsion is always related to the gauge structure.
- Thus, a possible way towards gravity quantization would need to bring torsion into gravity description.

Introduction

- 1998: Universe acceleration
\Rightarrow Thousands of work in Modified Gravity
(f(R), Gauss-Bonnet, Lovelock, nonminimal scalar coupling,
nonminimal derivative coupling, Galileons, Hordenski, massive etc)
[Copeland, Sami, Tsujikawa Int.J.Mod.Phys.D15], [Nojiri, Odintsov Int.J.Geom.Meth.Mod.Phys. 4]
- Almost all in the curvature-based formulation of gravity

Introduction

- 1998: Universe acceleration \Rightarrow Thousands of work in Modified Gravity
(f(R), Gauss-Bonnet, Lovelock, nonminimal scalar coupling, nonminimal derivative coupling, Galileons, Hordenski, massive etc) [Copeland, Sami, Tsujikawa Int.J.Mod.Phys.D15], [Nojiri, Odintsov Int.J.Geom.Meth.Mod.Phys. 4]
- Almost all in the curvature-based formulation of gravity
- So question: Can we modify gravity starting from its torsion-based formulation?

torsion \Rightarrow gauge
$? \Rightarrow$ quantization
modification \Rightarrow full theory $\quad ? \Rightarrow$ quantization

Teleparallel Equivalent of General Relativity (TEGR)

- Let's start from the simplest tosion-based gravity formulation, namely TEGR:
- Vierbeins e_{A}^{μ} : four linearly independent fields in the tangent space

$$
g_{\mu \nu}(x)=\eta_{A B} e_{\mu}^{A}(x) e_{\nu}^{B}(x)
$$

- Use curvature-less Weitzenböck connection instead of torsion-less Levi-Civita one: $\Gamma_{v \mu}^{\lambda(1)\rangle}=e_{A}^{\lambda} \partial_{\mu} e_{v}^{A}$
- Torsion tensor:

$$
T_{\mu \nu}^{\lambda}=\Gamma_{\nu \mu}^{\lambda\{W\}}-\Gamma_{\mu \nu}^{\lambda\{W\}}=e_{A}^{\lambda}\left(\partial_{\mu} e_{v}^{A}-\partial_{\nu} e_{\mu}^{A}\right) \quad \text { [Einstein 1928], [Pereira: Introduction to TG] }
$$

Teleparallel Equivalent of General Relativity (TEGR)

- Let's start from the simplest tosion-based gravity formulation, namely TEGR:
- Vierbeins e_{A}^{μ} : four linearly independent fields in the tangent space

$$
g_{\mu \nu}(x)=\eta_{A B} e_{\mu}^{A}(x) e_{\nu}^{B}(x)
$$

- Use curvature-less Weitzenböck connection instead of torsion-less Levi-Civita one: $\Gamma_{\nu \mu}^{\lambda(W)}=e_{A}^{\lambda} \partial_{\mu} e_{v}^{A}$
- Torsion tensor:

$$
T_{\mu \nu}^{\lambda}=\Gamma_{\nu \mu}^{\lambda\{W\}}-\Gamma_{\mu \nu}^{\lambda\{W\}}=e_{A}^{\lambda}\left(\partial_{\mu} e_{\nu}^{A}-\partial_{\nu} e_{\mu}^{A}\right)
$$

- Lagrangian (imposing coordinate, Lorentz, parity invariance, and up to $2^{\text {nd }}$ order in torsion tensor)

$$
L \equiv T=\frac{1}{4} T^{\rho u} T_{\rho \mu \nu}+\frac{1}{2} T^{\rho u} T_{\nu \mu \rho}-\mathrm{T}_{\rho u}^{\rho} T_{v}^{v \mu}
$$

- Completely equivalent with GR at the level of equations
[Einstein 1928], [Hayaski,Shirafuji PRD 19], [Pereira: Introduction to TG]

$\mathrm{f}(\mathrm{T})$ Gravity and $\mathrm{f}(\mathrm{T})$ Cosmology

- $f(T)$ Gravity: Simplest torsion-based modified gravity
- Generalize T to $f(T)$ (inspired by $f(R)$)

$$
S=\frac{1}{16 \pi G} \int d^{4} x e[T+f(T)]+S_{m} \quad \text { [Bengochea, Ferraro PRD 79], [Linder PRD 82] }
$$

- Equations of motion:

$$
e^{-1} \partial_{\mu}\left(e e_{A}^{\rho} S_{\rho}^{\mu \nu}\right)\left(1+f_{T}\right)-e_{A}^{\lambda} T_{\mu \lambda}^{\rho} S_{\rho}^{v \mu}+e_{A}^{\rho} S_{\rho}^{\mu \nu} \partial_{\mu}(T) f_{T T}-\frac{1}{4} e_{A}^{\nu}[T+f(T)]=4 \pi G e_{A}^{\rho} T_{\rho}^{\nu(E \mathrm{EM})}
$$

$f(T)$ Gravity and $f(T)$ Cosmology

- f(T) Gravity: Simplest torsion-based modified gravity
- Generalize T to $f(T)$ (inspired by $f(R)$)

$$
S=\frac{1}{16 \pi G} \int d^{4} x e[T+f(T)]+S_{m} \quad \text { [Bengochea, Ferraro PRD 79], [Linder PRD 82] }
$$

- Equations of motion:

$$
e^{-1} \partial_{\mu}\left(e e_{A}^{\rho} S_{\rho}^{\mu \nu}\right)\left(1+f_{T}\right)-e_{A}^{\lambda} T_{\mu \lambda}^{\rho} S_{\rho}^{v \mu}+e_{A}^{\rho} S_{\rho}^{\mu \nu} \partial_{\mu}(T) f_{T T}-\frac{1}{4} e_{A}^{\nu}[T+f(T)]=4 \pi G e_{A}^{\rho} T_{\rho}^{\nu(E M)}
$$

- $f(T)$ Cosmology: Apply in FRW geometry:

$$
e_{\mu}^{A}=\operatorname{diag}(1, a, a, a) \Rightarrow d s^{2}=d t^{2}-a^{2}(t) \delta_{i j} d x^{i} d x^{j} \quad \text { (not unique choice) }
$$

- Friedmann equations:

$$
\begin{aligned}
& H^{2}=\frac{8 \pi G}{3} \rho_{m}-\frac{f(T)}{6}-2 f_{T} H^{2} \\
& \dot{H}=-\frac{4 \pi G\left(\rho_{m}+p_{m}\right)}{1+f_{T}-12 H^{2} f_{T T}}
\end{aligned}
$$

- Find easily

$$
T=-6 H^{2}
$$

f(T) Cosmology: Background

- Effective Dark Energy sector:

$$
\begin{aligned}
\rho_{D E} & =\frac{3}{8 \pi G}\left[-\frac{f}{6}+\frac{T}{3} f_{T}\right] \\
w_{D E} & =-\frac{f-T f_{T}+2 T^{2} f_{T T}}{\left[1+f_{T}+2 T f_{T T}\right]\left[f-2 T f_{T}\right]}
\end{aligned}
$$

[Linder PRD 82]

- Interesting cosmological behavior: Acceleration, Inflation etc
- At the background level indistinguishable from other dynamical DE models

$\mathrm{f}(\mathrm{T})$ Cosmology: Perturbations

- Can I find imprints of $\mathrm{f}(\mathrm{T})$ gravity? Yes, but need to go to perturbation level

$$
e_{\mu}^{0}=\delta_{\mu}^{0}(1+\psi), e_{\mu}^{\alpha}=\delta_{\mu}^{\alpha} \alpha(1-\phi) \Rightarrow d s^{2}=(1+2 \psi) d t^{2}-a^{2}(1-2 \phi) \delta_{i j} d x^{i} d x^{j}
$$

- Obtain Perturbation Equations:

$$
\begin{array}{cll}
\text { L.H.S }=\text { R.H.S } & \\
\text {. } & \text { [Chen, Dent, Dutta, Saridakis PRD 83], } \\
\text { L.H.S }=\text { R.H.S } & \text { [Dent, Dutta, Saridakis JCAP 1101] }
\end{array}
$$

- Focus on growth of matter overdensity $\delta \equiv \frac{\delta \rho_{m}}{\rho_{m}}$ go to Fourier modes:

$$
3 H\left(1+f_{T}-12 H^{2} f_{T T}\right) \dot{\phi}_{k}+\left[\left(3 H^{2}+k^{2} / a^{2}\right)\left(1+f_{T}\right)-36 H^{4} f_{T T}\right] \phi_{k}+4 \pi G \rho_{m} \delta_{k}=0
$$

[Chen, Dent, Dutta, Saridakis PRD 83]

$\mathrm{f}(\mathrm{T})$ Cosmology: Perturbations

- Application: Distinguish $f(T)$ from quintessence
- 1) Reconstruct $f(T)$ to coincide with a given quintessence scenario:

$$
f(H)=16 \pi G H \int \frac{\rho_{Q}}{H^{2}} d H+C H \quad \text { with } \quad \rho_{Q}=\dot{\phi}^{2} / 2+V(\phi) \text { and } \mathrm{H}=\sqrt{-\mathrm{T} / 6}
$$

[Dent, Dutta, Saridakis JCAP 1101]

$\mathrm{f}(\mathrm{T})$ Cosmology: Perturbations

- Application: Distinguish $f(T)$ from quintessence
- 2) Examine evolution of matter overdensity $\mathcal{\delta} \equiv \frac{\delta \rho_{m}}{\rho_{m}}$
[Dent, Dutta, Saridakis JCAP 1101]

Bounce and Cyclic behavior

- Contracting ($H<0$), bounce $(H=0)$, expanding ($H>0$) near and at the bounce $\dot{H}>0$
- Expanding ($H>0$), turnaround ($H=0$), contracting $H<0$ near and at the turnaround $\dot{H}<0$

Bounce and Cyclic behavior in $f(T)$ cosmology

- Contracting ($H<0$), bounce ($H=0$), expanding ($H>0$) near and at the bounce $\dot{H}>0$
- Expanding ($H>0$), turnaround ($H=0$), contracting $H<0$ near and at the turnaround $\dot{H}<0$

$$
\begin{aligned}
& H^{2}=\frac{8 \pi G}{3} \rho_{m}-\frac{f(T)}{6}-2 f_{T} H^{2} \\
& \dot{H}=-\frac{4 \pi G\left(\rho_{m}+p_{m}\right)}{1+f_{T}-12 H^{2} f_{T T}}
\end{aligned}
$$

- Bounce and cyclicity can be easily obtained
[Cai, Chen, Dent, Dutta, Saridakis CQG 28]

Bounce in $f(T)$ cosmology

- Start with a bounching scale factor: $a(t)=a_{B}\left(1+\frac{3}{2} \sigma t^{2}\right)^{1 / 3}$
$\Rightarrow t(T)= \pm\left(-\frac{4}{3 T}-\frac{2}{3 \sigma}+\frac{4 \sqrt{T \sigma^{3}+\sigma^{4}}}{3 T \sigma^{2}}\right)$
$\Rightarrow f(t)=\frac{4 t}{\left(2+3 \sigma^{2}\right) M_{p}^{2}}\left[\frac{\rho_{m B}}{t}+\frac{6 t M_{p}^{2} \sigma^{2}}{2+3 \sigma t^{2}}+\sqrt{6 \sigma} \rho_{m B} \operatorname{ArcTan}\left(\sqrt{\frac{3 s}{2}} t\right)\right]$

Bounce in $f(T)$ cosmology

- Start with a bounching scale factor: $a(t)=a_{B}\left(1+\frac{3}{2} \sigma t^{2}\right)^{1 / 3}$
$\Rightarrow t(T)= \pm\left(-\frac{4}{3 T}-\frac{2}{3 \sigma}+\frac{4 \sqrt{T \sigma^{3}+\sigma^{4}}}{3 T \sigma^{2}}\right)$
$\Rightarrow f(t)=\frac{4 t}{\left(2+3 \sigma t^{2}\right) M_{p}^{2}}\left[\frac{\rho_{m B}}{t}+\frac{6 t M_{p}^{2} \sigma^{2}}{2+3 \sigma t^{2}}+\sqrt{6 \sigma} \rho_{m B} \operatorname{ArcTan}\left(\sqrt{\frac{3 s}{2}} t\right)\right]$

- Examine the full perturbations:
$\ddot{\phi}_{k}+\alpha \dot{\phi}_{k}+\mu^{2} \phi_{k}+c_{s}^{2} \frac{k^{2}}{a^{2}} \phi_{k}=0$ with $\alpha, \mu^{2}, c_{s}^{2}$ known in terms of $H, \dot{H}, f, f_{T}, f_{T T}$ and matter
$\left(\ddot{h}_{i j}+3 H \dot{h}_{i j}-\frac{\nabla^{2}}{a^{2}} h_{i j}\right)-\frac{12 H \dot{H} f_{T T}}{1+f_{T}} \dot{h}=0$
- \Rightarrow Primordial power spectrum: $P_{5}=\frac{\sigma}{288 \pi^{2} M_{p}^{2}}$
. \Rightarrow Tensor-to-scalar ratio: $r \approx 2.8 \times 10^{-3}$
[Cai, Chen, Dent, Dutta, Saridakis CQG 28]

Non-minimally coupled scalar-torsion theory

- In curvature-based gravity, apart from $R+f(R)$ one can use $R+\xi R \varphi^{\wedge} 2$
- Let's do the same in torsion-based gravity:

$$
S=\int d^{4} x e\left[\frac{T}{2 \kappa^{2}}+\frac{1}{2}\left(\partial_{\mu} \varphi \partial^{\mu} \varphi+\xi T \varphi^{2}\right)-V(\varphi)+L_{m}\right]
$$

Non-minimally coupled scalar-torsion theory

- In curvature-based gravity, apart from $R+f(R)$ one can use $R+\xi R \varphi^{\wedge} 2$
- Let's do the same in torsion-based gravity:

$$
S=\int d^{4} x e\left[\frac{T}{2 \kappa^{2}}+\frac{1}{2}\left(\partial_{\mu} \varphi \partial^{\mu} \varphi+\xi T \varphi^{2}\right)-V(\varphi)+L_{m}\right]
$$

- Friedmann equations in FRW universe:

$$
H^{2}=\frac{\kappa^{2}}{3}\left(\rho_{m}+\rho_{D E}\right)
$$

$\dot{H}=-\frac{\kappa^{2}}{2}\left(\rho_{m}+p_{m}+\rho_{D E}+p_{D E}\right)$
with effective Dark Energy sector: $\rho_{D E}=\frac{\dot{\varphi}^{2}}{2}+V(\varphi)-3 \xi H^{2} \varphi^{2}$

$$
p_{D E}=\frac{\dot{\varphi}^{2}}{2}-V(\varphi)+4 \xi H \varphi \dot{\varphi}+\xi\left(3 H^{2}+2 \dot{H}\right) \varphi^{2}
$$

- Different than non-minimal quintessence!

Non-minimally coupled scalar-torsion theory

- Main advantage: Dark Energy may lie in the phantom regime or/and experience the phantom-divide crossing
- Teleparallel Dark Energy:

[Geng, Lee, Saridakis, Wu PLB 704]

Observational constraints on Teleparallel Dark Energy

- Use observational data (SNIa, BAO, CMB) to constrain the parameters of the theory
- Include matter and standard radiation: $\rho_{M}=\rho_{M 0} / a^{3}, \rho_{r}=\rho_{r 0} / a^{4}, 1+z=1 / a$
- We fit $\Omega_{M 0}, \Omega_{D E 0}, w_{D E 0}, \xi$ for various $V(\varphi)$

Observational constraints on Teleparallel Dark Energy

Exponential potential

Quartic potential

Phase-space analysis of Teleparallel Dark Energy

- Transform cosmological system to its autonomous form:

$$
\begin{aligned}
& x=\frac{\kappa \dot{\varphi}}{\sqrt{6 H}}, y=\frac{\kappa \sqrt{V(\varphi)}}{\sqrt{3} H}, z=\sqrt{|\xi|} \kappa \varphi \\
\Rightarrow & \Omega_{m} \equiv \frac{\rho_{m}}{3 H^{2}}=1-x^{2}-y^{2}+z^{2} \operatorname{sgn}(\xi), \quad \Omega_{D E} \equiv \frac{\rho_{D E}}{3 H^{2}}=x^{2}+y^{2}-z^{2} \operatorname{sgn}(\xi) \\
& w_{D E}=w_{D E}(x, y, z, \xi) \\
\Rightarrow & X^{\prime}=f(X),\left.\quad X^{\prime}\right|_{X=X_{C}}=0
\end{aligned}
$$

- Linear Perturbations: $X=X_{C}+U \quad \Rightarrow \boldsymbol{U}^{\prime}=\boldsymbol{Q U}$
- Eigenvalues of Q determine type and stability of C.P

1 Phase-space analysis of Teleparallel Dark Energy

- Apart from usual quintessence points, there exists an extra stable one for $\lambda^{2}<\xi$ corresponding to $\Omega_{D E}=1, w_{D E}=-1, q=-1$

- At the critical points $w_{D E} \geq-1$ however during the evolution it can lie in quintessence or phantom regimes, or experience the phantomdivide crossing!
[Xu, Saridakis, Leon, JCAP 1207]

Exact charged black hole solutions

- Extend $f(T)$ gravity in D-dimensions (focus on $D=3, D=4$):

$$
S=\frac{1}{2 \kappa} \int d^{D} x e[T+f(T)-2 \Lambda]
$$

- Add E/M sector: $L_{F}=-\frac{1}{2} F \wedge^{*} F$ with $F=d A, A \equiv A_{\mu} d x^{\mu}$
- Extract field equations: L.H.S = R.H.S [Gonzalez, Saridakis, Vasquez, JHEP 1207]
[Capozzielo, Gonzalez, Saridakis, Vasquez, JHEP 1302]

Exact charged black hole solutions

- Extend $f(T)$ gravity in D-dimensions (focus on $D=3, D=4$):

$$
S=\frac{1}{2 \kappa} \int d^{D} x e[T+f(T)-2 \Lambda]
$$

- Add E/M sector: $L_{F}=-\frac{1}{2} F \wedge^{*} F$ with $F=d A, A \equiv A_{\mu} d x^{\omega}$
- Extract field equations: L.H.S = R.H.S
- Look for spherically symmetric solutions:

$$
\begin{aligned}
& e^{0}=F(r) d t, e^{1}=\frac{1}{G(r)} d r, e^{2}=r d x_{1},, e^{3}=r d x_{2}, \cdots \\
& \Rightarrow d s^{2}=F(r)^{2} d t^{2}-\frac{1}{G(r)^{2}} d r^{2}-r^{2} \sum_{1}^{D-2} d x_{i}^{2}
\end{aligned}
$$

- Radial Electric field: $E_{r}=\frac{Q}{r^{D-2}} \Rightarrow F(r)^{2}, G(r)^{2}$ known
[Gonzalez, Saridakis, Vasquez, JHEP 1207], [Capozzielo, Gonzalez, Saridakis, Vasquez, JHEP 1302]

Exact charged black hole solutions

- Horizon and singularity analysis:
- 1) Vierbeins, Weitzenböck connection, Torsion invariants: $\mathrm{T}(\mathrm{r})$ known \Rightarrow obtain horizons and singularities
- 2) Metric, Levi-Civita connection, Curvature invariants:
$\mathrm{R}(\mathrm{r})$ and Kretschmann $R_{\mu \nu \rho} R^{\mu \nu \rho \sigma}(r)$ known
\Rightarrow obtain horizons and singularities

Exact charged black hole solutions

- More singularities in the curvature analysis than in torsion analysis! (some are naked)
- The differences disappear in the $f(T)=0$ case, or in the uncharged case.
- Should we go to quartic torsion invariants?
- $f(T)$ brings novel features.
- E / M in torsion formulation was known to be nontrivial (E / M in EinsteinCartan and Poinaré theories)

Solar System constraints on $f(T)$ gravity

- Apply the black hole solutions in Solar System:
- Assume corrections to TEGR of the form $f(T)=\alpha T^{2}+O\left(T^{3}\right)$

$$
\begin{aligned}
& \Rightarrow F(r)^{2}=1-\frac{2 G M}{c^{2} r}-\frac{\Lambda}{3} r^{2}+\alpha\left[-6 \Lambda-\frac{6}{r^{2}}-\frac{4 G M \Lambda}{c^{2} r}\right] \\
& \Rightarrow G(r)^{2}=1-\frac{2 G M}{c^{2} r}-\frac{\Lambda}{3} r^{2}+\alpha\left[\frac{8 \Lambda}{3}-\frac{24}{r^{2}}-2 \Lambda^{2} r^{2}-\frac{2 G M}{c^{2} r}\left(8 \Lambda-\frac{8}{r^{2}}\right)\right]
\end{aligned}
$$

Solar System constraints on $f(T)$ gravity

- Apply the black hole solutions in Solar System:
- Assume corrections to TEGR of the form $f(T)=\alpha T^{2}+O\left(T^{3}\right)$

$$
\begin{aligned}
& \Rightarrow F(r)^{2}=1-\frac{2 G M}{c^{2} r}-\frac{\Lambda}{3} r^{2}+\alpha\left[-6 \Lambda-\frac{6}{r^{2}}-\frac{4 G M \Lambda}{c^{2} r}\right] \\
& \Rightarrow G(r)^{2}=1-\frac{2 G M}{c^{2} r}-\frac{\Lambda}{3} r^{2}+\alpha\left[\frac{8 \Lambda}{3}-\frac{24}{r^{2}}-2 \Lambda^{2} r^{2}-\frac{2 G M}{c^{2} r}\left(8 \Lambda-\frac{8}{r^{2}}\right)\right]
\end{aligned}
$$

- Use data from Solar System orbital motions:

$$
\Delta U_{f(T)} \leq 6.2 \times 10^{-10}
$$

$\mathrm{T} \ll 1$ so consistent

- $f(T)$ divergence from TEGR is very small
- This was already known from cosmological observation constraints up to $O\left(10^{-1}-10^{-2}\right) \quad[W u$, Yu, PLB 693], [Bengochea PLB 695]
- With Solar System constraints, much more stringent bound.

Growth-index constraints on $f(T)$ gravity

- Perturbations: $\ddot{\delta}_{m}+2 H \dot{\delta}_{m}=4 \pi G_{e f f} \rho_{m} \delta_{m}$, clustering growth rate: $\frac{d \ln \delta_{m}}{d \ln a}=\Omega_{m}^{\psi}(a)$
- $\mathrm{Y}(\mathrm{z})$: Growth index. $G_{e f f}=\frac{1}{1+f^{\prime}(T)}$

Growth-index constraints on $f(T)$ gravity

- Perturbations: $\ddot{\delta}_{m}+2 H \dot{\delta}_{m}=4 \pi G_{e f f} \rho_{m} \delta_{m}$, clustering growth rate:

$$
\frac{d \ln \delta_{m}}{d \ln a}=\Omega_{m}^{\gamma}(a)
$$

- $\mathrm{Y}(\mathrm{z})$: Growth index. $G_{e f f}=\frac{1}{1+f^{\prime}(T)}$

- Viable $f(T)$ models are practically indistinguishablě from $\wedge C D M$.
[Nesseris, Basilakos, Saridakis, Perivolaropoulos, PRD 88]

Open issues of $f(T)$ gravity

- $f(T)$ cosmology is very interesting. But $f(T)$ gravity and nonminially coupled teleparallel gravity has many open issues [Li, Sotiriou, Barrow PRD 83a],
- For nonlinear $f(T)$, Lorentz invariance is not satisfied
- Equivalently, the vierbein choices corresponding to the same metric are not equivalent (extra degrees of freedom) [LL,Sotiriou,Barrow PRD 83c], [LL,Miao,Miao JHEP 1107]

Open issues of $f(T)$ gravity

- $f(T)$ cosmology is very interesting. But $f(T)$ gravity and nonminially coupled teleparallel gravity has many open issues [Li, Sotiriou, Barrow PRD 83a],
- For nonlinear $f(T)$, Lorentz invariance is not satisfied
- Equivalently, the vierbein choices corresponding to the same metric are not equivalent (extra degrees of freedom) [LL,Sotiriou,Barrow PRD 83c], [Li,Miao,Miao JHEP 1107]
- Black holes are found to have different behavior through curvature and torsion analysis [Capozzielo, Gonzalez, Saridakis, Vasquez JHEP 1302]
- Thermodynamics also raises issues [Bamba,Geng JCAP 1111], [Miao,L,i,Miao JCAP 1111]
- Cosmological, Solar System and Growth Index observations constraint f(T) very close to linear-in-T form

Gravity modification in terms of torsion?

- So can we modify gravity starting from its torsion formulation?
- The simplest, a bit naïve approach, through $f(T)$ gravity is interesting, but has open issues
- Additionally, $f(T)$ gravity is not in correspondence with $f(R)$
- Even if we find a way to modify gravity in terms of torsion, will it be still in 1-1 correspondence with curvature-based modification?
- What about higher-order corrections, but using torsion invariants (similar to Gauss Bonnet, Lovelock, Hordenski modifications)?
- Can we modify gauge theories of gravity themselves? E.g. can we modify Poincaré gauge theory?

Conclusions

- i) Torsion appears in all approaches to gauge gravity, i.e to the first step of quantization.
- ii) Can we modify gravity based in its torsion formulation?
- iii) Simplest choice: $f(T)$ gravity, i.e extension of TEGR
- iv) $f(T)$ cosmology: Interesting phenomenology. Signatures in growth structure.
- v) We can obtain bouncing solutions
- vi) Non-minimal coupled scalar-torsion theory $\mathrm{T}+\xi \mathrm{T} \varphi^{2}$: Quintessence, phantom or crossing behavior.
- vii) Exact black hole solutions. Curvature vs torsion analysis.
- viii) Solar system constraints: $f(T)$ divergence from T less than 10^{-10}
- ix) Growth Index constraints: Viable $f(T)$ models are practically indistinguishable from \wedge CDM.
- x) Many open issues. Need to search for other torsion-based modifications too.

Outlook

- Many subjects are open. Amongst them:
- i) Examine thermodynamics thoroughly.
- ii) Extend $f(T)$ gravity in the braneworld.
- iii) Understand the extra degrees of freedom and the extension to non-diagonal vierbeins.
- iv) Try to modify TEGR using higher-order torsion invariants.
- v) Try to modify Poincaré gauge theory (extremely hard!)
- vi) What to quantize? Metric, vierbeins, or connection?
- vii) Convince people to work on the subject!

THANK YOU!

