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             All the cosmological relativistic models are based on the pseudoriemannian 

metric g , having Lorentz signature and with the associated Levi-Civita connection 

(g, ). Their diversity and the appearance of the cosmological phenomena require the 

revaluation of the Einstein model , by adding the new models  ),( DgM D
 , with 

asymmetrical  linear connections  D . All these models must preserve the ortogonality of 

the one-dimensional distributions ( i.e. of the directions ) at the parallel transport (which 

implies the existence of the nonlinear connection N) and therefore the preservation of the 

isotropic directions. 

    From these reasons we will consider the models   ),( DgM D
  with the property that 

for every linear connections MDD D


)2()1(
,  on M , these linear connections must have 

the above property. We will say that the linear connections  DD
)2()1(

,  are g-conjugated 

ones ( we will denote  DD
g

)2()1(
~ ). 

    Then we will obtain the non-symmetric model of Einstein , as a particular case. 

   We will also study the relation between N and DD
)2()1(

, , using the modern theory of 

the vector bundles E and the decomposition VEHEE  ( Whitney). We will give a 

classification of the g-conjugated cosmological models. 

 

 

§1. Generalities 

 

A.The differentiable manifolds M, endowed with a pseudo-riemannian metric g, 

play an essential role in the modelling of a cosmological theory.So we have to study the 

problem of its existence.  

B. The notion of parallel transport is  a fundamental one for the geometric 

modelling. At its turn this notion involve two aspects : 
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 1. The parallel transport which is associated to a linear connection D , on M and , 

as a particular case , that one which is associated to the Levi-Civitta  connection   

defined by g. For an arbitrary linear connection D we must study its global existence , on 

M.  

2. The generalised parallel transport which does not take account of a linear 

connection; if we supplementary take account of a linear connection D we have a 

particular case. 

While the aspect 1. is very often studied the aspect 2. is not so known , but it is 

very necessary one for a general cosmological theory.  

In [5], [13] it was obtained an extended theory of the generalised parallel 

transport.           

 Theorem (1.1). Let us consider a paracompact , C - differentiable manifold nM . 

Then the generalised parallel transport involve a decomposition of the tangent bundle 

ETM   in the Whitney sum: 

(1.1) VEHETE    

where  VE is the vertical subbundle and este  HE is the horizontal subbundle  

In the mathematical terms we can restate the Theorem 1.1 : 

 Theorem (1.2). The generalised parallel transport involve the existence of a 

distribution  

(1.2) EHExH x:   ETEH xx   

such that : 

 (1.3) EVEHET xxx   

Having the above theorems we can cuantify the general parallel transport , using 

the last results related to the vector bundle theories and the existence of the remarcable 

linear connections  D , called d-linear-connections .  

Definition 1 ([M]). A linear connection D, on E , which preserve , by parallelism 

, the horizontal  and the vertical distributions H and V on E is called d- linear –

connection. 

We obtain : 
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Theorem 1.3. The generalised parallel transport implies the existence of  a 

parallel transport related to a linear connection D , which preserve the horizontal and the 

vertical distribution H and V . 

Having the above results we will be able to introduce in a cosmological modelling 

, especially in the Einstein Theory of the Generalised Relativity , the notions of horizontal 

horizont  H  and vertical horizont V. We have also a calculus algorithm [5 ]. 

 C. Because in a cosmological modelling is also involved the light phenomena , if 

we use  a pseudo-riemannian metric g( in a  particular case having the Lorentz signature), 

we will be constrained  to use those linear connection which preserve the isotropic 

distributions at the parallel transport.In this way we will reach at the theory of the pairs of 

the g-conjugated linear connections , elaborated in   [4] , [5], [7], [9]. 

These are few topics proposed by the authors in cosmological modelling and 

especially in the Generalised Relativity. We will reconsider , in the folowing statements , 

those aspects .  

§2. Cosmological modelling 

Every cosmological model is based on the  fundamental notion of differentiable 

manifold M , endowed with a pseudo-riemannian metric g .  

It is already known: 

Proposition . (2.1.). Let us consider a paracompact , connected ,  C -

diferentiable manifold nM . Then there exists a riemannian metric G on M. 

We can not state the same thing regarding the existence of a pseudo-riemannian 

metric g. In this case we need supplementary conditions , involving the topology , such as 

the vanishing of the topological invariant Euler-Poincare characteristic ( see [ 14]). 

From geometrical point of view this is equivalent with the existence of a vector 

field )(MXV  , which is a nonzero one in every point.  

It results: 

Proposition. (2.2). In the hypothesis of the proposition 2.1 , if there exists a  

vector field )(MXV   which is a nonzero one in every point then there will exists a 

pseudo-riemannian metric , having the Lorentz signature.  
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Proof.: In the hypothesis of the proposition 2.1 globally there exists a riemannian 

metric G. Having the vector field )(MXV  which is a nonzero one in every point we will 

be able to define a tensorial field of type   2,0  on  M  by : 

(2.1)        YXGVYGVXGYXg ,,,2,     MXYX  ,  

where V  has the property   1, VVG  in every point  Mx  .  

It is  sufficient to consider in   VXXMx n ,..., 11   an orthonormal base; it results : 

(2.2)     1,,,1,1,  VVgnrXXg rr   

Because M is a connected manifold the signature of g is a constant one. So g is a 

pseudo-riemannian metric having the Lorentz signature . 

In the folowing statements we will consider a pseudo-riemannian manifold 

 gM n ,  in the above conditions for M ( so g has the Lorentz signature ).  

The model from the Einstein Genelised Theory of Relativity will be denoted by 

 ;;( gME ,T ) , where    is the Levi-Civitta connection defined by the pseudo-

riemannian metric g , i.e.  

(2.3)     0,,;0 


YXXYYXTg YXX  

( is a metric connection 0g  and a symmetrical one , i.e. it is a nulltorsion 

one 0


T ),  and  T is the energy-momentum tensor from the Einstein equations : 

(2.4)        XYkXYgXYrgXYr T


2

1
 

where   is a cosmological constant,  k is the Einstein  constant and 


r  is the 

Ricci’s tensor. 

If the value of  is very small then we will have the Einstein’s equations with the 

conservation  law  

(2.5) 0Tdiv  

We have to study the change of the linear connection    into another linear 

connection D in the following cases: 

a) D is a g-metrical  one   0Dg  but with torsion  

(2.6)     0,,  YXXDYDYXT YX  
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b) D is a symetrical one  0T  but it is not a g-metrical one  0Dg  

c) D has torsion   0T  and it is not a g-metrical one  0Dg  

In the case 0T  the model will be called an assymetrical one . 

The study of the assymetrical model was , for a long time , a serious problem even 

for Einstein . In the last part of his life  ([1]) he accepted a non-ssymetrical model, 

by choosing a linear connection  D (with 0T ) which preserve the Einstein’s 

equations and also preserve the law   

(2.7) 0TDdiv  

having the form  

(2.8)  YXYYD XX   

where  

(2.9) df    )(Mf T  

i.e.    is an exact 1-form   M1 . 

The study in a local map was already done. We have  studied in this paper those 

aspects using a modern , invariant method. 

Obviously we have  : 

(2.10) 0d   (where d is the external differential) 

i.e.    is a closed form..  

Globally , if we have  (2.10) then we won’t have  (2.9); it is  only locally true , 

according to the Poincaré Lemma .  

We get: 

Theorem (2.3). The assymetric Einstein model can be generalised if we don’t 

have anymore the condition df . 

Notice 1. For  D from (2.8) we have  0,0  DgT . That means that we are in a 

particular case (C). 

For a bigger generalisation , useful in every cosmological model ( which involve 

the light phenomena) we will start from the general geometrical study , according to the 

purpose from (C) (§1). 

 

 



 6 

§3. g-conjugated models  

 

We will denote by     ,;,,;, 2211 DgMLDgML   two models for the same 

cosmological phenomena. 

Definition . (3.1). We will say that  21 , LL  are  g-conjugated models if , for every 

two orthogonal one –dimensional distributions  2

)1(

1

)1(

,DD  on  M  

(3.1)   0,
21
VVg  2

)1(

2
1

)1(

)1(
, DD  VV  

at their parallel transport , related to  
)2()1(

, DD  it is  preserved the relation  (3.1). 

A comprehensiv mathematical study is given in [6 ] ,[7 ] ,[9 ]. 

Starting from the definition  (3.1)  we obtain : 

Definition. (3.2). Two cosmological models  21 , LL  will be  called  g-echivalent 

ones if the relation  ~ on the set















 )2()1(

, DD  is a relation of equivalence. We will denote in 

these conditions 21 ~ LL
g

. 

We get : 

Theorem (3.1). Let us consider two cosmological models  21 , LL  which are g-

conjugated ones .We have  21 ~ LL
g

 if and only if 
)2()1(

, DD are coparallel linear connections , 

namely they have the same paralellism of the one-dimensional  distributions. 

Theorem (3.2). Let us consider two cosmological models  21 , LL  which are g-

conjugated ones .We have  21 ~ LL
g

  if and only if we have : 

(3.2)  YXYDYD XX 
)1()2(

 )(),(, 1 MMxYX    

It results , as a particular case: 

Theorem (3.3). The non-symmetrical Einstein model  DgMLD ,,  is  g-

equivalent with the simmetrical  Einstein  model   ,, gML . 

Definition (3.3). A non-symmetrical model  DgMLD ,,  is strictly equivalent 

with the simmetric Einstein model L , if it preserve the Einstein equations : 
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(3.3) DD

DD

krXYr T
2

1
)(

)(

 

and the conservation law 

 (3.4) 0DDdiv T  

We will denote in this case  LLD ~  

It results : 

Theorem (3.4). We have  LLD ~ if and only if  : 

(3.5)  YXYYD XX   

Where    is a closed form   0d . 

Corollary (3.1). As a particular case the non-symmetrical Einstein model is 

strictly equivalent with with the simmetrical Einstein model because   0dfd . 

In this way we have a geometrical interpretation of the choice (2.8) (2.9) made by 

Einstein and also a generalisation of the  non-symmetrical model of Einstein  . 

Therefore every non-symmetrical model DL  of the Theory of the Generalised 

Relativity which preserve the Einstein equations must have the linear connection D which 

is coparallel with   , with the closed 1-form   ( in a particular case an exact one).  

Corolarry (3.2). Any non-symmetrical Einstein models 


















)2(

2

)1(

1 ,,,,, DgMLDgML  of 

the Theory of the Generalised Relativity have 
)2()1(

, DD  which are coparallel ones , with a 

closed 1-form. 

Both 
)1(

D  and  
)2(

D  can not be compatible with  g( namely can not be metrical ones ). 

In the general case if we consider  TME   and g on  E, we will have a 

decomposition  (1.3) and linear d-connections  D  on  TME   satisfying: 

(3.6) 0,0  hYvDvYhD XX   )(, ExYX   

where  h, v are the horizontal projector and the vertical projector 

(3.7)   0, vYhXg   )(, ExYX   

It results : 

Theorem (3.5). Two d-linear connections  
)2()1(

, DD  on  E are  g-conjugated ones if 

and only of they are  g-conjugated ones for the one-dimensional distributions 



 8 



























 )1(

2

)1(

1

)1(

2

)1(

1
,, vvhh DDDD  ( 

)1(

1

hD  is the horizontal one-dimensional distribution and  
)1(

1

vD  is the 

vertical one-dimensional distribution). 

Notice  1. The condition  (3.1) is verified by  itself  if  
)1(

2
2

)1()1(

1
1

)1(

 , vh DDDD  . 

Notice 2. In this case on  TME   there exists an almost complex structure F 

defined by  

(3.8) hvvh YFYXFX  ;  

where  hZ  denote the horizontal lift of  MxX   and vZ  denote the vertical lift 

of  )(MxZ . It results  IF 2 . This structure will be a complex one if it will be an 

integrable one (i.e. the Nijenhuis’s tensor vanishes  : 0FN ). 

Having these structures we will be able to write the g-conjugation condition into a 

local , adapted basis etc. 

 

§4. Generalizations 

 

Let us consider a non-symmetrical  cosmological model   DgMLD ,,  which is 

strictly equivalent with the Einstein model   ,, gML . 

Let us consider two cosmological models   1

1
,, DgMLD  ,    2

2
,, DgMLD   ; 

let us take only the general condition 
21

~ DD LL  ( i.e. the two models to be g-conjugated 

ones ), but this is regarded as a consequence of LL
g

D ~
1

,  as the only one connection 

beetwen these  models. 

We can write the general transformations:  

(4.1)  YXYYD XX ,)1()1(   

(4.2)  YXYYD XX ,)2()2(   

  )(, MxYX   

where : 
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(4.3) )2()1( ,  are two tensors of type  








2

1
 (the tensors of the affine 

deformation ). 

We have (3.5).  

Let us impose the condition  
21

~ DD LL . It results: 

(4.4)      
















 ZXYgZYgDZYgX X ,,,,)(

)21()1(

  

(4.5)      
















 ZXYgZYgDZYgX X ,,,,)(

)21()2(

  

 )(),(,, 1 MMxZYX    

(4.6) ZDZDZX XX

)1()2()21(

),(   

If we are tacking account of  (3.5) we get : 

Theorem (4.1).  We have : 

(4.7) ),(),()()(
)1()2()21(

ZXZXZXXZ     

(4.8) 0d  

(4.9)          

























 ZXYgZXYgZYgDYZgX X ,,,,,

)1()2()1(

  

(4.10)          

























 ZXYgZXYgZYgDZYgX X ,,,,,,

)1()2()2(

  

where : 

(4.11)    

(4.12) 0;   d  

From these relations we get: 

Theorem (4.2). 
21

, DD LL  are g-conjugated models if and only if : 

(4.13)        ZYgXXZYgZYXg ,,,,
)2()1(

 
















 

 )();(,, 1 MMxZYX    

As a particular case if we impose the supplementary condition that the two 

models to be g-equivalent ones it results : 
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Theorem (4.3). If  
21

~ D

g

D LL then we will have : 

(4.14)        YXYXYX   ,,
)1()2(

 

where  )(1 M  and  
)2()1(

,  are satisfaying : 

(4.15)         ZYgXXZYgZYXg ,,,,
)1(1

 
















 

(4.16)         YgXZXYgZYXg  
















,,,,

)2()2(

 

but also converselly. 

Of course we can consider another particular cases. 

Our opinion is that we will be able to give a comprehensive model for 

cosmological theories if we will replace the tangent bundle  , TME  , with a vector 

bundle having the total space E , with the type-fiber R and making  a decomposition 

(4.17) VEHETE   

by the condition : 

(4.18)   )(,,0, ExYXvYhXg   

i.e. 

(4.19) vghgg   

where the metric  g has Lorentz signature.  

We can assume that: 

(4.20) hg  

is pozitive defined. 

A study of the non-symmetrical Einstein models , which are equivalents with L , 

on such kind of structures , is in progress. 
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