Development of a multidimensional relativistic radiative transfer code

Nozomu Tominaga (Konan Univ./Kavli IPMU)

Sanshiro Shibata (Konan Univ.)
Sergei I. Blinnikov (ITEP)

KKONAN UNIVERSITY
$9^{\text {th }}$ Dec 2013
XXVII Texas Symposium

Outline

* Motivation
* Radiation in gamma-ray bursts
* Multidimensional relativistic RT cal.
* Spherical Harmonic Discrete Ordinate Method (SHDOM)
* Implementation of physical processes for relativistic radiative transfer cal.
* Test problems

Gamma-ray bursts (GRBs)

* Gamma-ray emission from relativistic jets

* The emission mechanism is under debate.
* We need to study it with quantitative comparisons between obs. and theory.

Previous numerical studies

* Relativistic Monte Carlo simulation (on steady flow)
E.g., Giannois06; Pe'er08; Beloborodov10; Ito + 13;
 body radiation from a surface (e.g., $\tau_{\mathrm{sc}}=1$)

> Tolstov+13 (rel. rad. transfer: Beloborodov11)

However, GRBs involve relativistic jets with $\mathrm{E}_{\mathrm{r}} \sim \mathrm{E}_{\mathrm{m}}$.
Therefore, a multid. rela. rad. hyd. cal. is necessary.
Since even a multid. rela. rad. trans. cal. is not available, we develop it as the $1^{\text {st }}$ step toward GRB rad. cal..

Multidimensional multigroup radiative transfer equation

* 6-dimensional Boltzmann equation

$$
\begin{aligned}
& \quad \begin{aligned}
& \frac{1}{c} \frac{\partial I(t, s, \nu, \Omega)}{\partial t}+\boldsymbol{n} \cdot \nabla I(t, s, \nu, \Omega) \\
&=\eta(t, s, \nu, \Omega)-\sigma_{\mathrm{a}}(t, s, \nu, \Omega) I(t, s, \nu, \Omega)
\end{aligned} \\
& +\int_{0}^{\infty} d \nu^{\prime} \int d \Omega^{\prime}\left[\frac{\nu}{\nu^{\prime}} \sigma_{\mathrm{s}}\left(t, s, \nu^{\prime} \rightarrow \nu, \Omega^{\prime} \rightarrow \Omega\right) I\left(t, s, \nu^{\prime}, \Omega^{\prime}\right)\right. \\
& \left.\quad-\sigma_{\mathrm{s}}\left(t, s, \nu \rightarrow \nu^{\prime}, \Omega \rightarrow \Omega^{\prime}\right) I(t, s, \nu, \Omega)\right]
\end{aligned}
$$

* We concentrate on spatially 2 -dimensional equation (3-dimension for photon direction).

Spherical Harmonic Discrete Ordinate Method (SHDOM)

* Solve static monochromatic radiative transfer eq.

$$
\boldsymbol{n} \cdot \nabla I(s, \Omega)=\eta_{\text {all }}(s, \Omega)-\alpha(s, \Omega) I(s, \Omega)
$$

Evans+98, Pincus\&Evans09

* Ray tracing in a discrete ordinate space

$$
I(s)=\exp \left[-\int_{0}^{s} \alpha\left(s^{\prime}\right) d s^{\prime}\right] I(0)+\int_{0}^{s} \exp \left[-\int_{s^{\prime}}^{s} \alpha\left(s^{\prime \prime}\right) d s^{\prime \prime}\right] S\left(s^{\prime}\right) \alpha\left(s^{\prime}\right) d s^{\prime}
$$

* Deriving source function with spherical harmonics expansion

$$
\begin{gathered}
S(\Omega)=\sum_{l m} Y_{l m}(\Omega) S_{l m} \quad P(\cos \Theta)=\sum_{l=0}^{N_{\mathrm{L}}} \chi_{l} \mathscr{P}_{l}(\cos \Theta) \\
S_{l m}=\frac{\omega \chi_{l}}{2 l+1} I_{l m}+T_{l m}
\end{gathered}
$$

In order to apply to GRBs,

several revisions are required.

1. Time dependence

* Light velocity is finite for the relativistic medium.

2. Lorentz transformation

* Relativistic beaming
* Energy variation

3. Compton scattering

* Photon energy is as high as electron rest mass.

1. Time dependence

* Time-dependent radiative transfer eq.

$$
\frac{1}{c} \frac{\partial I(s, \nu, \Omega)}{\partial t}+\boldsymbol{n} \cdot \nabla I(s, \nu, \Omega)=\eta_{\text {all }}(s, \nu, \Omega)-\alpha(s, \nu, \Omega) I(s, \nu, \Omega)
$$

* First, we discretize the time-derivative term,

$$
\begin{aligned}
& \frac{\partial I(s, \nu, \Omega)}{\partial t}=\frac{I^{n+1}(s, \nu, \Omega)-I^{n}(s, \nu, \Omega)}{\Delta t} \\
& \tilde{\alpha}=\alpha+\frac{1}{c \Delta t} \quad \tilde{\eta}_{\text {all }}=\eta_{\text {all }}+\frac{I^{n}}{c \Delta t} \\
& \boldsymbol{n} \cdot \nabla I^{n+1}=\tilde{\eta}_{\text {all }}-\tilde{\alpha} I^{n+1}
\end{aligned}
$$

Baron +09 , Hiller\&Dessart12, Jack+12

2. Lorentz transformation

* Photon energy

$$
\nu_{0}=\Gamma \nu\left(1-\frac{\boldsymbol{n} \cdot \boldsymbol{v}}{c}\right) \quad \boldsymbol{n}_{0}=\frac{\nu}{\nu_{0}}\left\{\boldsymbol{n}-\Gamma \frac{\boldsymbol{v}}{c}\left[1-\frac{\Gamma}{\Gamma+1} \frac{\boldsymbol{n} \cdot \boldsymbol{v}}{c}\right]\right\}
$$

E.g., Mihalas \& Weibel Miharas 84

Laboratory $\overline{-0-0.5--1+0.0} 0.6 \quad 0.4$ 0.2 $0-0.2-0.4-0.6$ frame

3. Compton scattering

* Photon energy
$\varepsilon_{1}=\frac{\varepsilon}{1+\frac{\varepsilon}{m c^{2}}(1-\cos \theta)}$

* Differential cross section

$$
\frac{d \sigma}{d \Omega}=\frac{r_{0}^{2}}{2} \frac{\varepsilon_{1}}{\varepsilon}\left(\frac{\varepsilon}{\varepsilon_{1}}+\frac{\varepsilon_{1}}{\varepsilon}-\sin ^{2} \theta\right)
$$

E.g., Rybicki \& Lightman 85

Test problems

Beam test

* Optically thin medium: $512(\mathrm{x}) \times 512(\mathrm{y}) \times 4(\theta) \times 8(\phi)$

Two beam with shadow

* Optically thick cylinder:128(x) x128(y) $\times 32(\theta) \times 64(\phi)$

Relativistic beaming

* Thermal cylinder: $128(\mathrm{x}) \times 128(\mathrm{y}) \times 32(\theta) \times 64(\phi)$

Comparison with MC cal. - Thomson scattering-

* Optically thick cuboid: $128(\mathrm{x}) \times 128(\mathrm{y}) \times 16(\theta) \times 32(\phi)$

Comparison with MC cal. -Compton scattering-

* Optically thick cuboid: 64(x) x64(y) $\times 64(\theta) \times 128(\phi) \times 10(v)$

Summary

* A multidimensional time-dependent relativistic radiative transfer code is essential to numerically study the radiation from GRBs.
* We develop the code with implementing time dependence, Lorentz transformation, and compton scattering to SHDOM code.
* This is the $1^{\text {st }}$ step to realize a multidimensional relativistic radiation hydrodynamics calculation.
* Next step: we will incorporate the code with a relativistic hydrodynamics code (NT09).

