PeVatron Halos

Yves Gallant et al.

Dallas, Texas, 12/9/13

Motivatio

lalo luminosity

Size and appearance

Summary

Ultra-High-Energy γ -ray Halos around Short-Lived Galactic PeVatrons

> Yves Gallant, Elena Amato & Julien Lavalle

INAF – Arcetri Observatory, Florence, ITALY & LUPM, CNRS / IN2P3, U. Montpellier 2, FRANCE

XXVII Texas Symposium on Relativistic Astrophysics Dallas, Texas, December 9, 2013

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Are SNRs the Galactic PeVatrons?

Credo: Supernova remnants accelerate Galactic cosmic rays.

PeVatron Halos

Yves Gallant et al.

Dallas, Texas, 12/9/13

Motivation

lalo luminosity

Size and appearance

Summary

・ロ・・ 日・・ 日・・ 日・ クタぐ

Are SNRs the Galactic PeVatrons?

Credo: Supernova remnants accelerate Galactic cosmic rays.

- ▶ many SNRs now detected in GeV (HE) and TeV (VHE) γ -rays
- in at least some cases, γ -ray emission likely of hadronic origin
- (non-linear diffusive shock acceleration) (NLDSA) theory predicts Γ ≈ 2.0 – 2.1; then observe cutoffs E_{γ,cut} ~ 10 TeV

e.g. Cas A (Abdo et al. 2010)

GeV / TeV hadronic spectral fits imply either :

- energy cutoff at 10 TeV (and $\Gamma = 2.1$)
- steeper spectral index $\Gamma = 2.3$ (no cutoff)

 \Rightarrow no evidence that **any** known SNR is currently accelerating cosmic rays to PeV energies (with theoretically expected spectrum)

Where are the PeVatrons ? (Lemoine-Goumard 2012)

PeVatron Halos

Yves Gallant et al.

Dallas, Texas, 12/9/13

Motivation

lalo luminosity

ize and appearance

Theoretical solution: short-lived PeVatrons?

- if SNRs are the main sources of Galactic cosmic rays, they must at some stage of their evolution be "PeVatrons"
- challenging theoretically to reach $E_{\text{max}} \sim 3 \text{ PeV}$ for protons (need high enough δB to confine them near the shock)
- Schure & Bell (2013a) consider Bell's non-resonant hybrid instability for SNRs evolving in pre-supernova stellar winds

- "[...] we get to about a PeV but not too much beyond, and only for SNRs younger than a few decades."
- related suggestions (some on shorter time scales) by Völk & Biermann (1988), Tatischeff (2009), Renaud et al. (*in prep.*)

PeVatron Halos

Yves Gallant et al.

Dallas, Texas, 12/9/13

Motivation

alo luminosity

Size and appearance

Implications of short-lived PeVatron scenarios

Hypothesis

► the sources of GCRs ("PeVatrons") reach E_{p,max} ~ few PeV for only a brief (∆t ≤ 10 yr) period (e.g. the early SNR phase)

Consequences

- ► the current *confined* accelerated particle spectrum deduced from γ -ray observations of SNRs will cut off at $E_{\rm esc}(t) \ll 3 \, {\rm PeV}$ (would need to be very lucky to catch one "in the act")
- ► recent PeVatrons injected the *escaped* PeV cosmic rays with E > E_{esc}(t) into the surrounding medium, during a short time

 \rightarrow could such PeV CRs be detectable through their interaction with the ISM, yielding **PeVatron halos** in γ -rays?

PeVatron Halos

Yves Gallant et al.

Dallas, Texas, 12/9/13

Motivation

alo luminosity

lize and appearance

Required cosmic-ray yield per PeVatron

• must replenish Galactic CR density against (diffusive) escape:

$$n(E) = n_0 E^{-2.68}, \quad t_{\rm res}(E) \approx H^2 / [2\kappa(E)]$$

 Galactic diffusion coefficient κ(E) at PeV energies? Extrapolate from lower-energy constraints (main uncertainty is in δ):

$$\kappa(E) \approx \kappa_0 E^{\delta}$$

Trotta et al. 2011 (solid): $\delta = \frac{1}{3}$ and 0.6

Putze et al. 2010 (*dashed*): $\delta = 0.24$ and 0.86

- ► assume PeVatrons at Galactic supernova rate: $1/\tau \approx 3/(100 \text{ yr})$
- (time-integrated) PeVatron escaping particle spectrum:

$$Q(E) = \frac{V_{\text{Gal}} n(E) \tau}{t_{\text{res}}} = \frac{4\pi R_{\text{Gal}}^2 n_0 \tau \kappa_0}{H} \times E^{-2.68+\delta}$$

PeVatron Halos

Yves Gallant et al.

Dallas, Texas, 12/9/13

Motivatio

Halo luminosity

ze and appearance

PeVatron halo γ -ray luminosity

- ► for $E > E_{esc}(t)$, CRs already propagating in interstellar medium
- ► CR p + ISM $p \rightarrow p + p + \pi$'s, and $\pi^0 \rightarrow 2\gamma$: total $L(E_{\gamma}) \propto n_{\text{ISM}} Q(12E_{\gamma})$, for $E_{\gamma} \geq E_{\text{esc}}(t)/12$

predicted fluxes for the halo of e.g. Cas A (and n_{ISM}=1 cm⁻³) could be detectable by LHAASO-KM2A, if less extended than a few square degrees

PeVatron Halos

Yves Gallant et al.

Dallas, Texas, 12/9/13

Motivatio

Halo luminosity

ize and appearance

Halo extent: diffusive regime

► at sufficiently large times, propagation will be diffusive:

$$R_h(E,t) \approx \sqrt{2\kappa(E)t}$$

• but this requires isotropisation of initial direction angle α :

$$\langle \Delta \alpha^2 \rangle \equiv \nu_{\alpha} t \approx \frac{c^2 t}{3\kappa(E)} \ge 1 \quad \Leftrightarrow \quad t \ge t_{\rm iso}(E) \equiv \frac{3\kappa(E)}{c^2}$$
$$t_{\rm iso}(E) = 4.2 \left(\frac{E_{\rm GeV}}{3}\right)^{1/3} \, {\rm yr} \approx 300 \, {\rm yr} \quad \text{for } E = 1 \, {\rm PeV}, \, \delta = 1$$

- for cases of interest, isotropisation borderline for $\delta = 1/3$, not yet effective for $\delta = 1/2$ or larger: free streaming at (a fraction of) the speed of light
- *Caveat:* generation of self-excited waves by streaming CRs might make isotropisation faster, and diffusive regime start earlier (with smaller $\kappa(E) \Rightarrow$ more effective confinement)

PeVatron Halos

Yves Gallant et al.

Dallas, Texas, 12/9/13

Votivation

lalo luminosity

Size and appearance

Summar

/3

Halo extent: free-streaming regime

with typical ISM scattering wave amplitudes, transition between free-streaming and diffusive regimes can be described as:

$$R_h(E,t) \le \min\left\{ct, \sqrt{2\kappa(E)t}\right\}$$

the free-streaming limit implies

$$R_h(t) \le 30.7 \,\mathrm{pc}\left(\frac{t}{100 \,\mathrm{yr}}\right) = 107 \,\mathrm{pc} \,\mathrm{for} \,\mathrm{Cas} \,\mathrm{A} \,(t \approx 350 \,\mathrm{yr})$$

- If this were the apparent size of the halo, at D = 3.4 kpc, would have angular size θ_h ≤ 1.8°
- N.B.: this extent is along the regular magnetic field direction; perpendicular extent due to field-line wandering, much smaller
- but (at least in free-streaming regime) PeVatron halo appearance affected by beaming and light-travel-time effects

PeVatron Halos

Yves Gallant et al.

Dallas, Texas, 12/9/13

Votivatior

alo luminosity

Size and appearance

PeVatron halo appearance

Beaming

- ► π 's from p p collisions beamed (with typical angle $1/\gamma_p$) in direction of CR proton
- γ -rays from π^0 decay beamed with typical angle $1/\gamma_{\pi}$
- $\Rightarrow \gamma$ -ray emission from CRs travelling nearly along line of sight

Light travel time

- consider ISM magnetic field making angle ϕ with line of sight
- ► $r_{\rm L} \sim 1 \, \text{pc}$ at $1 \, \text{PeV} \Rightarrow$ escaping CRs are "gyrotropised"
- ► see emission from CRs with pitch angle $\alpha \approx \phi$; $v_{\parallel} \approx c \cos \phi$
- in free-streaming regime (neglecting pitch-angle scattering): (one-sided) distance in plane of sky $x_h(t) \approx ct \cos \phi \sin \phi$
- light travel time: $t_{\rm obs} \approx t \left(1 \cos^2 \phi\right) = t \sin^2 \phi$
- \Rightarrow apparent sky velocity $v_{app} \approx c/\tan \phi$ (can be superluminal!)

PeVatron Halos

Yves Gallant et al.

Dallas, Texas, 12/9/13

Motivation

alo luminosity

Size and appearance

Summary and prospects

► if Galactic PeVatrons are short-lived, they are still surrounded by an over-density of *escaped* PeV cosmic rays, with radius

$$R_h(E,t) \le \min\left\{ct, \sqrt{2\kappa(E)t}\right\}$$

- the *ultra-high-energy* ($E_{\gamma} > 30 \text{ TeV}$) γ -ray flux of such PeVatron halos may be detectable with planned experiments such as LHAASO-KM2
- such "halos" would extend along the local ISM magnetic field direction, with centroid displaced from the source
- the detection of such halos would provide direct observational proof of the acceleration of cosmic-rays up to the "knee" energy
- if detected, the energy-dependent size and shape of such halos could provide unique observational constraints on the transport properties of very-high-energy cosmic rays in the Galaxy

PeVatron Halos

Yves Gallant et al.

Dallas, Texas, 12/9/13

Motivation Halo luminosity Size and appearance Summary

PeVatron Halos

Yves Gallant et al.

Dallas, Texas, 12/9/13

Motivatio

lalo luminosity

Size and appearance

Summary

Supplementary slides

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへぐ

LHAASO project and km² array

- ► a next-generation high-altitude (4300 m) direct detector array
- ▶ prototype operating in Tibet; planned site in Yunnan, China

"Electron" Detectors

Muon Detectors

Wide FOV Cherenkov Array

Core Detector Array

Water Cherenkov Detector Array

PeVatron Halos

Yves Gallant et al.

Dallas, Texas, 12/9/13

Motivatio

alo luminosity

Size and appearance

- KM2A for ultra-high-energy (E > 30 TeV) γ -ray astronomy:
 - surface scintillation detectors: large $A_{\rm eff} \sim 1 \, \rm km^2$
 - muon detectors: very good hadron rejection (>99.9% of p)

LHAASO-KM2A Sensitivity

(1 year of operation) 10^{11} ш γ / p separation تاريخ ۲(>E) (TeV/cm²s) ASY +MD MAGIC HAWC 10 19 H.E.S.S. KM2A СТА 39 10^{-14} I HAASO 10 $\mathop{\rm E}^{10^6}_{{\rm (GeV)}}$ 10² 10³ 10⁴ 10⁵ 10 (Cui & Ma for LHAASO, 2009 ICRC)

PeVatron Halos

Yves Gallant et al.

Dallas, Texas, 12/9/13

Motivatio

lalo luminosity

Size and appearance

Summary

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・