The observed Hubble sequence 6 Gyr ago: implications in galaxy evolution and mergers simulations.

R. Delgado-Serrano

Technological University of Panama Observatory of Panama

Team : F. Hammer, Y. Yang, M. Puech, H. Flores, M. Rodrigues Observatory of Paris-Meudon

27th Texas Symposium, Dallas-TX December 8-13, 2013

Galaxy Evolution since z=1

◆ 50% of the local stellar mass was formed during the last 8 Gyr, i.e., since z=1 (e.g., Dickinson+03 ; Drory+04)

<u>From evolution of</u>:
1. global stellar mass
(photometry, near-IR)
2. integrated SFR
(including IR light)

 Most of it was formed in LIRGs (SFR > 20 M_o/yr; Hammer+05; Bell+05), which are intermediate-mass galaxies

Le Floc'h et al. (2005)

Intermediate-mass galaxies

 $3.10^{10} < M_{stellar} < 3.10^{11} \, M_{\odot}$, i.e., $\sim M_{*}$ galaxies

- LIRGs are intermediate-mass systems, probably associated with episodic luminous phases (Hammer+05; Marcillac+06)
- The high fraction of z~0.6 LIRGs can be explained if each galaxy experiences 3-4 IR luminous phases since z=1, producing local intermediate-mass galaxies (Hammer+05)
- Local intermediate-mass galaxies are mostly spirals (70% of them)
- According to Hammer et al. (2005), 50 to 75% of local spirals have had a LIRG episode

How can we link the distant galaxies to local ones? ... and to the Hubble sequence?

Intermediate Mass Galaxy Evolution Sequence

The IMAGES collaboration:

M. Puech^{1,2}, H. Flores², F. Hammer², Y. Yang², B. Neichel², M. Lehnert², L. Chemin², N. Nesvadba², B. Epinat⁵, P. Amram⁵, C. Balkowski², C. Cesarsky¹, H. Dannerbauer⁶, S. di Serego Alighieri⁷, I. Fuentes-Carrera², B. Guiderdoni⁸, A. Kembhavi³, Y. C. Liang⁹, G. Östlin¹⁰, L. Pozzetti⁴, C. D. Ravikumar¹¹, A. Rawat^{2,3}, D. Vergani¹², J. Vernet¹, and H. Wozniak⁸, R. Delgado-Serrano, M. Rodrigues

The IMAGES Survey

The deepest & most complete observations of distant galaxies

IMAGES has given us a complete description of the galaxies properties, 6 Gyr ago

IMAGES has given us a complete description of the galaxies properties, 6 Gyr ago

Kinematics

Hubble Space Telescope • WFPC2

RC38-419 • November 23, 1998 • STScI OPO • The HDF-S Team and NA5

FLAMES/GIRAFFE on the VLT The need of 3D spectroscopy at high z

IFU mode:

15 IFUs deployable over a 20 arcmin FoV

Each IFU has a 3"x2" FoV with:

20 sq. μ Lenses, each one with a 0,52"x 0.52" FoV, cutting the integral light of the galaxy

20 spectrum with a resolution of $\sim 10\ 000$

Kinematics

Hubble Space Telescope • WFPC2

C38-419 • November 23, 1993 • STScI OPO • The HDF-S Team and NAS

FLAMES/GIRAFFE on the VLT The need of 3D spectroscopy at high z

IFU mode:

15 IFUs deployable over a 20 arcmin FoV

Each IFU has a 3"x2" FoV with:

20 sq. μ Lenses, each one with a 0,52"x 0.52" FoV, cutting the integral light of the galaxy

20 spectrum with a resolution of $\sim 10\ 000$

Kinematics

Mode IFU:

5x5 linear interpolation

Velocity field and dispersion map

<u>Provided by</u>: the absence of cross-talk between individual spectra.

 $\sigma_{\text{pixel}} = \sigma_{\text{random}_{\text{motions}}} \otimes \Delta V_{\text{large}_{\text{scale}_{\text{motions}}}}$

At low spatial resolution, dispersion maps of rotating disks do show a peak in their dynamical center

All galaxies are assumed to be rotating disks:

- their large scale motions are due to rotation
- simulation of corresponding VF and σ -map
- comparison of the derived σ -maps to the observed ones (relative difference of amplitude ϵ vs. σ peak distance Δr)

• Off-centred σ peak

• No obvious structure in the VF/σ-map

 M_{J}

Dynamics can explain the dispersion. What about galaxy morphology?

Morphological classification: Much more than observing the beauty of galaxies

How were the galaxies of the Hubble sequence 6 Gyrs ago?

The link between distant and local galaxies is affected by:

- Selection and observational biases
- The transformation of galaxies through time: stellar evolution, gaz supply, mergers ===> Change of type

Methodological Bias

Methodological Bias

The automatic methods

Morphological Classification vs Kinematic Classification

The case A-C :

- → Any Rotating Disk was classified as Spiral
- → 68% of unnormal Dynamics do not have an unnormal morphology.
- The case Gini- M_{20} :
- → 35% of Rotating Disks are not Spirals
- → 30% of unnormal Dynamics do not have an unnormal morphology.

Neichel et al. (2008)

Decision Tree

Decision Tree

Full Morphological Analysis

Decision Tree

Morphology versus kinematics

Neichel et al (2008)

Agreement between kinematics and morphological classifications

Anomalous kinematics of the gaseous component is almost always linked to anomalous morphological distribution of the stars

Samples of comparison

Criteria for the selection:

- M_J(AB)< -20.3

- good quality spectra including [OII] λ 3727
- At least three optical bands images (SDSS: u, g, r bands; CDFS: v, i, z bands)

Samples representativeness

 $M_{I}(AB) < -20.3$

Spatial Resolution

... K-correction, cosmological dimming or instrument differences?

K-correction, cosmological dimming or instrument differences

Survey	_	u band	g band	r band	i band	z band
SDSS		3551 Å	4686 Å	6165 Å	7481 Å	8931 Å
_	B band	V band	i band	z band	_	-
GOODS	4312 Å	5915 Å	7697 Å	9103 Å	-	_
rest-frame	2582 Å	3542 Å	4609 Å	5451 Å	_	—

	SDSS			GOODS ACS			
D=telescope diameter (m)		2.5			2.4		
Band	u	g	r	В	V	i	Z
T=Expo-time (s)	53.907456	53.907456	53.907456	7200.00	5450.00	7028.00	18232.00
B=sky background (mag)	22.15	21.85	20.85	23.43	22.74	22.72	22.36
Filter FWHM (Å)	567.00	1387.00	1373.00	728.95	1565.50	1017.40	1269.10
Filter range (Å)	~ 1000.00	$\sim \! 1800.00$	$\sim \! 1500.00$	8780.00	2570.00	1910.00	>3080.00

$\frac{SNR^{HST}}{SNR^{SDSS}} = \sqrt{\frac{FWHM^{HST}}{EWHM^{SDSS}}} * \sqrt{\frac{THST}{TSDSS}} * \frac{D^{HST}}{DSDSS}$	mag difference :
$*\sqrt{\frac{B^{SDSS}}{B^{HST}}} * \frac{f_{\lambda}^{HST_{z=0.0}}}{f_{\lambda}^{SDSS}} * \frac{1}{(1+z)^5}$	u (V) 0.52 g (i) 0.08 r (z) 1.02

Data base

NEWS RELEASE

Forming the present-day spiral galaxies

ACS & Ground-based

Results

	Local			
Туре	<u>Total (</u> %)	Quiescent (%)	Starburst (%)	
Ε	3±1	3±2	0 ± 0	
S0	15 ± 4	14 ± 4	20 ± 10	
Spiral	72±8	76 ± 10	55 ± 17	
Peculiar:	10 ± 3	7±3	25 ± 11	
P/Irr	4 ± 2	2 ± 1	15 ± 9	
P/Tad	$0{\pm}0$	$0{\pm}0$	0 ± 0	
P/Mer	4 ± 2	4 ± 2	5 ± 5	
P/C	2±1	1±1	5±5	

	Distant			
Туре	Total(%)	Quiescent (%)	Starburst (%)	
Ε	4±1	11±3	0 ± 0	
S0	13±2	33 ± 6	0 ± 0	
Spiral	31 ± 7	31±6	31±8	
Peculiar:	52 ± 9	25±5	69±12	
P/Irr	26 ± 7	21 ± 5	29±8	
P/Tad	6 ± 3	$0{\pm}0$	10 ± 5	
P/Mer	20 ± 6	4 ± 2	30 ± 8	
P/C	0 ± 0	0 ± 0	0 ± 0	

Delgado-Serrano et al. (2010)

Local Galaxies

Spiral 72%

Distant Galaxies

 E
 S0
 Spiral
 Peculiar

 4%
 13%
 31%
 52%

Hubble sequence evolution

- 5.2 times less peculiar galaxies
- No fraction evolution of E/S0 galaxies

The "Red Sequence" and galaxy morphology

The bimodality is not a good morphological discriminante:

R. DELGADO-SERRANO

38/41

Barred Galaxy fraction

R. DELGADO-SERRANO

39/41

Conclusions

- We have established a first approximation of what would be the progenitors, 6 Gyrs ago, of the galaxies of the present-day Hubble sequence.
- E/S0 galaxy populations show no evidence for a number evolution during the last 6 Gyrs;
- Slightly more than half of the distant galaxies have peculiar morphologies, that is likely associated to anomalous kinematics according to Neichel et al. (2008);
- The fraction of regular spiral was 2.3 times lower 6 Gyrs ago than at the present epoch;
- Morphology statistics strongly shows that almost all the galaxy evolution, since 6 Gyr ago, is caused by the transformation of galaxies with peculiar morphologies to regular spiral galaxies at present epoch;
- The transformation of peculiar distant galaxies to regular spiral in the present-day Hubble sequence should be addressed by current scenarios of galaxy evolution and formation.

Technological University of Panama Panama's Observatory

Thank You!!