

Effect of Lyman Limit Systems and Local Clumping Factor on the History of Cosmic Reionization

Alexander (Sasha) Kaurov

the University of Chicago

Kaurov & Gnedin (2013a,b)

History of cosmic reionization

Hubble Ultra Deep Field

Absorption of ionizing photons:

radiation from Galaxy

IGM, Clumping factor

neutral objects

Ionization front

Ways to study reionization:

Ways to study reionization:

Reionization models

Homogeneous reionization

Kuhlen & Faucher-Giguère (2012)

Inhomogeneous reionization

Semi-analytic and semi-numeric models

Zahn et al. (2011)

Numeric models

Paul Shapiro's talk

How analytic model works?

How analytic model works?

Alexander Kaurov, the University of Chicago

Effect of Lyman Limit Systems

Absorption of ionizing photons:

radiation from Galaxy

IGM, Clumping factor

neutral objects

Ionization front

Clumping factor

• Number of ionizations per hydrogen atom:

$$N_{\rm i/H}(t) = 1 + \frac{1}{N_{\rm H}} \int_0^t dt \int_V \alpha(T) n_e n_{\rm H\,II} dV,$$

• Clumping factor:

$$N_{i/H}(t) = 1 + \int_0^t dt \,\alpha_A C_{HII}(t, V) \langle n_e \rangle_V \langle n_{HII} \rangle_V$$
$$C_{HII}(t, V) \equiv \frac{\langle \alpha(T) n_e n_{HII} \rangle_V}{\alpha_A \langle n_e \rangle_V \langle n_{HII} \rangle_V}.$$

Filtering scale \rightarrow Clumping factor

Filtering scale

Г

(baryon overdensity)
$$\frac{\delta_b}{\delta_X} = 1 - \frac{k^2}{k_F^2}$$

If we consider a region which was ionized at redshift z_{ion} , then at redshift z_0 the filtering scale will be \rightarrow
 14
 12
 14
 12
 14
 12
 10
 k_F
 10
 10
 8
 10
 8
 6
 10
 8
 10
 10
 8
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 12
 14
 20
 10
 12
 14
 20

Local clumping factor

$$C_{\rm HII}^{\rm loc}(\bar{\delta},\sigma^2) = \frac{1}{\sqrt{2\pi(\sigma_{\infty}^2 - \sigma^2)}} \int_{-\infty}^{+\infty} d\delta e^{-\frac{(\delta - \delta)^2}{2(\sigma_{\infty}^2 - \sigma^2)}} \times (1 + \delta_{\rm HII})^2,$$

 k_F goes into $\sigma_\infty(k_F)$

Clumping factor of HII regions:

$$C_{\rm HII}^{\rm loc}(\bar{\delta},\sigma^2) = (1+\bar{\delta})^2 + (\sigma_\infty^2 - \sigma^2).$$

No recombinations Uniform recombinations Only $(1 + \delta)^2$ term Only $(\sigma_{\infty}^2 - \sigma^2)$ term Full model

Global clumping factor

Conclusions

- Analytic models allow to study effects connected with morphology of reionization,
- Lyman Limit Systems slows down the very end of reionization and makes it more gradual,
- Clumping factor is not uniform and depends on the history of reionization,
- Our analytic results for clumping factor can be also applied for post-reionization epoch.

Thank you for your attention!