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GW DATA ANALYSIS METHODS

Least squares fitting of 
parametric signal waveforms

(i.e., matched filtering)

Compact Binary 
Inspiral Continuous wave

Cross-correlation/ time-frequency / 
regularized least squares/ Bayesian priors …

Stochastic 
background

(GW noise process)

Bursts
(Un-modeled transient 

signals)

Short duration 
(~10 to ~100 msec)

Long duration 
(~100 msec to ~1 sec)

• Broadband
• Narrowband (non-

stationary)



UN-MODELED NARROWBAND
TRANSIENT GW SIGNALS

Acoustic mechanism for shock revival in post-bounce 
phase of a core collapse supernova (CCSN). 
-- Ott et al, Phys. Rev. Lett. (2006) 

• Instabilities in collapsar BH accretion torus (van Putten, Phys. Rev. D (2004)) 
• Crustal modes of Magnetars (Murphy et al, Phys. Rev. D (2013))

cos
is an unknown amplitude envelope; is an unknown phase

Narrowband: and instantaneous frequency, , change over much 
longer timescales than the instantaneous period (2 / ) 
Non-stationary: Instantaneous frequency can evolve over a large range

Unknown amplitude 
envelope 

Unknown frequency 
evolution 

s11WW progenitor 
model 
(windowed+filtered)



THE CHALLENGE

Advanced LIGO Matched filtering Signal to Noise Ratio (SNR) @ 10 kpc is in the range 
5 to 20 for most long duration CCSN signals with optimal source and detector 
orientation . (Murphy et al. ApJ (2009))

We consider SNR=10 signals in white Gaussian noise.

s11WW



THE CHALLENGE

Advanced LIGO Matched filtering Signal to Noise Ratio (SNR) @ 10 kpc is in the range 
5 to 20 for most long duration CCSN signals with optimal source and detector 
orientation . (Murphy et al. ApJ (2009))

We consider SNR=10 signals in white Gaussian noise.

Detection Challenge: Detect signal at a fairly low false alarm probability
Estimation Challenge:  Estimated signal should match true signal in at least some 
characteristic features
Time-frequency methods are ineffective, especially for estimation

s11WWdbleFake



ALGORITHM
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Linear spline

Cubic spline

• solved analytically for given 
̅ and 

• Minimization over ̅ and 	: 
Particle Swarm Optimization 

(Kennedy, Eberhart, 1995)

Enforces smoothness of 



EXAMPLES

• Data length 2 sec; 10 temporal and 5 frequency knots+5 frequency values
• PSO based optimization over a 20 dimensional search space
• Max. instantaneous signal frequency for the search : 800 Hz. 

True SNR 10 Estimate
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RESULTS: DETECTION PERFORMANCE

White Gaussian noise; 
s11WW @ matched filtering SNR = 10

Detection statistic ( ): -norm of estimated 
signal Effective SNR 

|
|

• s11WW signal: 7.6
• dbleFake signal: 10.6 ( matched 

filtering SNR!)

• Plain Time-frequency method with 
hand-tuned TF parameters.

• 	: magnitude of the loudest pixel 
in:

• : [0, 800] Hz and [0, 2.0]sec
• : [500,700]Hz and [0.8,1.5]sec
• s11WW signal: 5.5
• dbleFake signal: 5.4



ESTIMATION PERFORMANCE

Amplitude envelope and instantaneous frequency of the 
analytic representation of the  signal (Hilbert transform)

• Sample-by-sample match of true and estimated signals is not a useful measure of 
estimation performance 

• We need to know how well some basic features are estimated .
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SUMMARY

• A GW search algorithm for situations where time-frequency 
methods don’t work well
• At best, TF analysis misidentifies a long duration signal as a short burst

• Can resolve widely different amplitude and carrier frequency 
evolutions
• Good match of the estimated amplitude envelope and instantaneous 

frequency on the average
• Better discrimination of source models in terms of their GW signals

• Detection performance is fairly robust across the wide range 
of signals considered 
• Effective SNR between 7.5 and 10.0 for matched filtering SNR of 10

• Work in progress on further improvements
• Improving the non-linear optimization phase (currently using PSO with 

minimal modifications)
• Instantaneous frequency models that show smoother time evolution.


