Un-modeled Narrowband **Transient Gravitational** Wave Signals Meeting the detection and Estimation challenge

Soumya D. Mohanty Dept. Physics and Astronomy Center for Gravitational Wave Astronomy

UT Brownsville

GW DATA ANALYSIS METHODS

UN-MODELED NARROWBAND TRANSIENT GW SIGNALS

Acoustic mechanism for shock revival in post-bounce phase of a core collapse supernova (CCSN). -- Ott et al, Phys. Rev. Lett. (2006)

$$s(t) = a(t)\cos(\varphi(t))$$

a(t) is an unknown amplitude envelope; $\varphi(t)$ is an unknown phase <u>Narrowband:</u> a(t) and instantaneous frequency, $\dot{\varphi}(t)$, change over much longer timescales than the instantaneous period $(2\pi/\dot{\varphi})$ <u>Non-stationary</u>: Instantaneous frequency can evolve over a large range

- Instabilities in collapsar BH accretion torus (van Putten, Phys. Rev. D (2004))
- Crustal modes of Magnetars (Murphy et al, Phys. Rev. D (2013))

THE CHALLENGE

Advanced LIGO <u>Matched filtering Signal to Noise Ratio</u> (SNR) @ 10 kpc is in the range 5 to 20 for most long duration CCSN signals <u>with optimal source and detector</u> <u>orientation .</u> (Murphy *et al. ApJ* (2009))

We consider SNR=10 signals in white Gaussian noise.

THE CHALLENGE

Advanced LIGO Matched filtering Signal to Noise Ratio (SNR) @ 10 kpc is in the range 5 to 20 for most long duration CCSN signals with optimal source and detector orientation. (Murphy et al. ApJ (2009))

We consider SNR=10 signals in white Gaussian noise.

Detection Challenge: Detect signal at a fairly low false alarm probability Estimation Challenge: Estimated signal should match true signal in at least some characteristic features Time-frequency methods are ineffective, especially for estimation

ALGORITHM

 \overline{y} data vector $\in \mathbb{R}^N$ and \overline{s} signal vector $\in S \subset \mathbb{R}^N$ \overline{s} : samples of the analog signal

$$s(t;\overline{\tau},\overline{\psi}) = a(t;\overline{\tau})\cos\phi(t;\overline{\psi})$$

 $a(t;\overline{\tau})$: cubic spline with knots at $\overline{\tau} = (\tau_1, \tau_2, ..., \tau_M)$

$$\Rightarrow a(t;\overline{\tau}) = \sum_{i=1}^{M} \alpha_i \times \underbrace{B_i(t)}_{i=1}$$

Enforces smoothness of a(t)

Basis Functions of the linear space of cubic splines with knots at $\overline{\tau}$

Rupert, Wand, Caroll, Semiparametric Regression

- α_i solved analytically for given $\bar{\tau}$ and $\bar{\psi}$
- Minimization over $\bar{\tau}$ and $\bar{\psi}$: Particle Swarm Optimization (Kennedy, Eberhart, 1995)

EXAMPLES

- Data length 2 sec; 10 temporal and 5 frequency knots+5 frequency values
- PSO based optimization over a 20 dimensional search space
- Max. instantaneous signal frequency for the search : 800 Hz.

EXAMPLES

- Data length 2 sec; 10 temporal and 5 frequency knots+5 frequency values
- PSO based optimization over a 20 dimensional search space
- Max. instantaneous signal frequency for the search : 800 Hz.

RESULTS: DETECTION PERFORMANCE

Effective SNR $\frac{mean(\lambda|H_1) - mean(\lambda|H_0)}{stdev(\lambda|H_0)}$

- s11WW signal: 7.6
- dbleFake signal: 10.6 (≈ matched filtering SNR!)
- Plain Time-frequency method with hand-tuned TF parameters.
- λ : magnitude of the loudest pixel in:
 - H₀: [0, 800] Hz and [0, 2.0]sec
 - H₁: [500,700]Hz and [0.8,1.5]sec
 - s11WW signal: 5.5
 - dbleFake signal: 5.4

ESTIMATION PERFORMANCE

- Sample-by-sample match of true and estimated signals is not a useful measure of estimation performance
- We need to know how well some basic features are estimated.

Amplitude envelope and instantaneous frequency of the **analytic representation of the signal** (Hilbert transform)

ESTIMATION PERFORMANCE

- Sample-by-sample match of true and estimated signals is not a useful measure of estimation performance
- We need to know how well some basic features are estimated.

Amplitude envelope and instantaneous frequency of the **analytic representation of the signal** (Hilbert transform)

SUMMARY

- A GW search algorithm for situations where time-frequency methods don't work well
 - At best, TF analysis misidentifies a long duration signal as a short burst
- Can resolve widely different amplitude and carrier frequency evolutions
 - Good match of the estimated amplitude envelope and instantaneous frequency on the average
 - Better discrimination of source models in terms of their GW signals
- Detection performance is fairly robust across the wide range of signals considered
 - Effective SNR between 7.5 and 10.0 for matched filtering SNR of 10
- Work in progress on further improvements
 - Improving the non-linear optimization phase (currently using PSO with minimal modifications)
 - Instantaneous frequency models that show smoother time evolution.