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Schematic picture of the ground state structure of 
neutron stars
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• Large magnetic fields can change the 
structure and properties of matter

• Electrons motion perpendicular to the 
magnetic field will be quantized into Landau 
orbitals

• Magnetars are highly magnetized neutron 
stars with B∼ 1015 G
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Single electron energy levels:

We consider low enough densities where 
only the lowest landau level is occupied.

En =
�

k2z + 2neB +m2
e

ne = (eB/2π2)ke
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Screening of the ion-ion potential by electrons

Sharma and Reddy (2011) computed the effect of 
one loop electron-hole polarization function on the 
ion-ion potential.  

We We 

V (q) =
Z1Z2e2

q2 − e2Π(q)

V (r) =
Z1Z2e2

r
g(r)
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with r =
√

ρ2 + z2, FB(q⊥, qz) = −e2"B(0, q), and
"B(0, q) is the static polarizability of the electron gas in the
presence of a magnetic field.

Restricting to m = 0 in the sum in Eq. (14), we have

FB(q⊥, qz) = e2 eB

2π

∑

n

∫ ∞

−∞

dkz

2π
2θ

[
µ −

√
(kz)2 + m2

e

]

×
W

(
E0, En,m, n, kz

0, k
z
n, q

z
)

En − E0
. (23)

The sum over n in Eq. (23) runs over all non-negative
integers, but the most important contribution for eB %
µ2 and eB % q2 is the n = 0 term. (This is shown in
Appendix A.) Therefore for simplicity, we drop the n > 0
terms, which allows us to calculate analytic expressions for
FB(q) and the screened Coulomb interaction in certain limits.
With these approximations,

FB(q⊥, qz) ∼
(

e

π

)2(
eB

2

)
e−q2

⊥/(2eB)
∫ kz

f

−kz
f
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√
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e −

√
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e

×
[
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e

√
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e
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2
√
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e
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(kz + qz)2 + m2

e

, (24)

where kz
f =

√
µ2 − m2

e is the Fermi momentum of the elec-
trons in the z direction for the m = 0 level. If higher levels are
occupied, each will have a different Fermi momentum.

Now we consider two limiting cases. First, in the nonrela-
tivistic regime where me % kz

f , we obtain for large B

FB(q⊥, qz) ∼
(

e

π

)2(
eB

2

)
e−q2

⊥/2eB

×
∫ kz

f

−kz
f
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[
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]
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(

e

π

)2(
eB
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)
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2kz
f − qz

)
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. (25)

The Debye mass is given by

m2
D = lim

q→0
FB(q⊥, qz) =

(
e

π

)2(
eB

2

)(
me

kz
f

)
, (26)

and since ne = eB/(2π2)
√

µ2 − m2
e , this expression [Eq. (26)]

is consistent with Eq. (17). The key feature of the expression
for FB(q⊥, qz) in Eq. (25) is its nonanalytic behavior as a
function of qz. In the complex plane, Eq. (25) has branch cuts
along qz = ±2kz

f + iη, η > 0. Restricting qz to the real axis,
one sees a kink at qz = ±2kz

f (Fig. 2). On the other hand,
the expression is analytic in q⊥. Based on this we can expect
long-range oscillations in g(z) with wavelength π/kz

f in the
z direction, but no long-range features in the x–y plane.

In the relativistic regime, where me ( µ we find that

FB(q⊥, qz) ∼
(

e

π

)2(
eB

2

)
e−q2

⊥/2eB

∫ kz
f

−kz
f
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× (kz + qz)kz + |kz||kz + qz|
2|kz||kz + qz|

×
(

1
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)

=






(
e
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)2( eB
2
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e−q2

⊥/2eB q⊥ < kz
f

(
e
π

)2( eB
2

)
e−q2

⊥/2eB kz
f

|qz| q⊥ > kz
f

. (27)

The Debye mass square is m2
D = limq→0 FB(q⊥, qz) =

( e
π

)2( eB
2 ). The number of electrons in these limits is ne =

eB/(2π2)
√

µ2 − m2
e ∼ [eB/(2π2)]µ and therefore m2

D =
e2dne/dµe = e2[eB/(2π2)] as expected.

From Eq. (27) we note that in the ultrarelativistic limit
FB does not have any nonanalytic behavior at qz = 2kz

f .
On the other hand, FB is nondifferentiable at qz = kz

f . This
behavior is different from that of a free electron gas, where
the nonanalyticity occurs at ±2kz

f in both the relativistic
and nonrelativistic limits. However, this is an artifact of the
ultrarelativistic limit, and for any finite me, FB is differentiable
at qz = kz

f . We plot FB(qz) for three values of µ in Fig. 2.
We notice that for fixed µ there are two distinct features
in the plot versus qz. First, there is shoulder at kz

f that
becomes sharper as me/µ decreases. Second, there is a kink
at 2kz

f that becomes less prominent as me/µ decreases. In
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FIG. 2. (Color online) FB as a function of qz for q⊥ = 0,
eB = 100eBc, and three values of µ. As the electrons become more
relativistic (µ increases), the kink at 2kz

f becomes less sharp. The
shoulder at kz

f becomes nonanalytic in the ultrarelativistic limit.

025803-5

Sharma & Reddy,  PRC 83, 025803 (2011)

B = 100Bc

Only important when electrons are non-relativistic. 

Π(q)Due to a sharp Fermi surface,         shows non-analytic 
behavior at                 , which causes a long-range 
potential in the position space. 

qz = ±2ke
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Friedel Oscillations

Sharma & Reddy,  PRC 83, 025803 (2011)

RISHI SHARMA AND SANJAY REDDY PHYSICAL REVIEW C 83, 025803 (2011)

the ultrarelativistic limit the kink disappears, and the shoulder
becomes a nondifferentiable point. However, for any finite me,
the fact that the kink becomes less prominent suggests that the
Friedel oscillations will become weaker as me/µ decreases.
Hence, we will now focus on the nonrelativistic limit.

In the nonrelativistic limit, we can obtain an analytic
expression for g(ρ, z) valid for z ! 1/kz

f . We find

g(ρ, z) = gD(ρ, z) + gF (ρ, z), (28)

where

gD(ρ, z) = e−mD

√
ρ2+z2

(29)

is the Debye screening formula that comes from the pole in
the integrand in Eq. (22) at q = imD , and

gF (ρ, z) = −
√

ρ2 + z2

π

cos
(
2kz

f z
)

z

× m2
D(π/4)ρ

√(
2kz

f

)2 + m2
D(1/2) ln

(
4kz

f z
)

×K1
(
ρ
√

(2kz
f )2 + m2

D(1/2) ln(4kz
f z)

)
(30)

arises from the branch cuts at qz = ±2kz
f + iη. K is a modified

Bessel function of the second kind. The derivation of Eq. (28)
is given in Appendix B. For ρ = 0, we see that gF (0, z) exhibits
long-range Friedel oscillations in the z direction given by

gF (0, z) ∼ − cos
(
2kz

f z
)
. (31)

Equation (28) is a good approximation for z ! 1/kz
f . For

ρ → 0 and z → 0, we expect that g(ρ, z) should → 1 since
the short-range behavior of V (r) cannot be modified by
screening. For z → 0 the expression Eq. (28) breaks down
because (2kz

f )2 + m2
D(1/2) ln(4kz

f z) < 0, but in our derivation

we used the fact that z ! 1/kz
f , and we cannot trust Eq. (28) for

z < 1/kz
f anyway. For ρ = 0 our derivation remains valid but

Eq. (28) cannot be used directly since K1(aρ) goes as 1/(aρ)
as ρ → 0. The limit of g as ρ → 0, however, is finite because
aρK1(aρ) tends to 1 as ρ → 0. Therefore we define

g(ρ = 0, z) = e−mDz

−
cos

(
2kz

f z
)

π

m2
D(π/4)

(
2kz

f

)2 + m2
D(1/2) ln

(
4kz

f z
) .

(32)

For z = 0 the value of g(z) is well approximated by the Debye
screened value

g(ρ, z = 0) = e−mDρ . (33)

We have calculated g(ρ, z) for eB = 100eBc and µ =
0.7 MeV numerically. For these values, only the lowest Landau
level is occupied, and the Fermi momentum of the lowest Lan-
dau level is kz

f = 0.48 MeV. So the system is mildly relativistic,
and the electron Fermi energy is large compared to atomic
binding energy. The two relevant length scales for the screened
potential are the Debye screening length λD = 468 (fm),
and the wavelength of Friedel oscillations λF = π/kz

f =
eB/(2πne) = 1296 (fm). In the left panel (Fig. 3) we plot
g(ρ, z) along the z and the ρ directions separately. This allows
us to see the Friedel oscillations in the z direction clearly
and also compare the numerical results with the approximate
analytic expressions. Along the z axis, Eq. (32) is a good
approximation to the numerical result, and in the x–y plane,
the exponential Debye formula describes the result well. A
three-dimensional (3D) plot of g(ρ, z) in the ρ, z plane is
shown in the right panel and depicts that the Friedel oscillations
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FIG. 3. (Color online) Plots of g as a function of ρ for z = 0, and as a function of z, for ρ = 0 for eB = 100eBc, µ = 0.7 MeV. g shows
an exponential decay as a function of ρ, while along the z axis it shows long-range oscillations ∝ − cos(2kz

f z). Also shown is the Debye
screening length λD (vertical line, brown online) and aI = (3/(4πnI ))1/3 (vertical dot-dashed line, orange online, assuming Z = 26). The solid
lines correspond to the analytic approximations given in Eq. (32) (ρ = 0) and Eq. (33) (z = 0), while the points correspond to a numerical
computation of the Fourier transform in Eq. (15). The right panel shows the 3D plot of g(ρ, z) in the ρ, z plane with z and ρ.
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V (ρ = 0, z) = Z2α

�
e−mDz

z
− m2

De−z/λT

4z

cos(2kez)

4k2e +
m2

D
2 ln(4kez)

�

Bedaque, Mahmoodifar, Sen, PRC 88, 055801 (2013)
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Parameter Space of “Friedel Crystals” 

� �

�B �

�

�

�T

�

�Ρ �

fcc
bcc
rbcc
hcp

66Ni28

a� ∼ n× π

ke
To keep the density fixed, a⊥ varies with a�.

Normal bcc crystal in 
other parts of the crust
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Finite temperature effects:

3 4 5 6 7

a!! "1#k $2500
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Log10%B15& ! "2., Log10%T1& ! "0.5, Log10%Ρ8& ! "3.
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The energy change of the lattice due to a small displacement in the x direction 
when the wave is propagating in the z direction.

T ∼ 107MeV 66Ni28

λxx
zz

∆U ≈ 1

2

�
d3xλij

kl∂kξ
i∂lξ
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The energy change of the lattice due to a small displacement in the z direction 
when the wave is also propagating in the z direction.

T ∼ 107MeV 66Ni28

λzz
zz

λzz
zz ∼ 104 × (c11 − c12)
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Potentially interesting implications for the X-ray oscillations seen from magnetars 
during their giant flares. 

Elastic constants that are dominated by the longitudinal 
structure of the lattice are significantly larger than that 
of a bcc Coulomb crystal of comparable densities.

Thursday, December 12, 2013
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Goddard Space 
Flight Center 

Anatomy of a Hyperflare 
Three events to date: 
• March 5th 1979: SGR 
0526-66 

• August 27th 1998: SGR 
1900+14 

• December 27th 2004: SGR 
1806-20 

Powered by global magnetic 
instability (reconfiguration), 
crust fracturing. 

•  Short, hard, luminous initial 
pulse. 

•  Softer X-ray tail persists for 
minutes, and reveals 
neutron star spin period. 

•  Emission from a 
magnetically confined 
plasma. 

Hurley et al. (1998): Ulysses 

•  1015 G magnetic fields implied 
(Thompson & Duncan 95)  

Thanks to Tod strohmayer!
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 Dec. 2004  hyperflare from SGR 1806-20

T. Strohmayer and A. Watts 2006
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The observations of global oscillations of neutron stars  can provide a powerful 
probe of their interior properties, similar to the field of helioseismology. 

ω2
0,l ∝

v2t l(l + 1)

R2
vt =

�
µ/ρ

Core Alfven modes?
Crust shear modes?
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Effect of an anisotropic outer crust on the oscillation 
frequencies of the crustal modes?

µeff = 0.1194
niZ2e2

a
Ogata et al. 1990, Strohmayer et al. 

µeff = 0.1108
niZ2e2

a
Horowitz and Hughto 
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Conclusion

• Long range oscillations in the ion-ion potential along the magnetic field due to 
anisotropic screening of the Coulomb force by electrons in the presence of strong 
magnetic fields 

• The long-ranged potential forces the ions to organize themselves into strongly 
coupled filaments along the magnetic field.

• Friedel crystals form in the outer crust of magnetars

• Large elastic constants in the longitudinal direction

• Implications for QPOs (shear mode frequencies) and GWs (breaking strain)

Thursday, December 12, 2013
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Hydrogen/He
atmosphere

R ~ 10 km

n,p,e, µ

neutron star with
pion condensate

quark−hybrid
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hyperon 
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Figure 1: Competing structures and novel phases of subatomic matter predicted by theory
to make their appearance in the cores (R <∼ 8 km) of neutron stars [2].

transition to quark matter occurs. Neither do lattice Quantum Chromodynamical simulations provide
a conclusive guide yet. From simple geometrical considerations it follows that, for a characteristic
nucleon radius of rN ∼ 1 fm, nuclei begin to touch each other at densities of ∼ (4πr3

N/3)−1 " 0.24 fm−3,
which is less than twice the baryon number density of ordinary nuclear matter, ρ0 = 0.16 fm−3 (energy
density ε0 = 140 MeV/fm3). Depending on rotational frequency and stellar mass, such densities are
easily surpassed in the cores of neutron stars so that gravity may have broken up the neutrons (n)
and protons (p) in the centers of neutron stars into their constituents. Moreover, since the mass of the
strange quark (s) is rather small, probably less than 100 MeV as indicated by the latest lattice results
[30], high-energetic up (u) and down (d) quarks may readily transform to strange quarks at about the
same density at which unconfined up and down quarks appear.

The phase diagram of quark matter, expected to be in a color superconducting phase, is very complex
[26, 27]. At asymptotic densities the ground state of QCD with a vanishing strange quark mass is the
color-flavor locked (CFL) phase. This phase is electrically charge neutral without any need for electrons
for a significant range of chemical potentials and strange quark masses [31]. (Technically, there are
no electrons only at zero temperature. At finite temperature the electron population is exponentially
(exp(−∆/T )) suppressed, where ∆ denotes the superconducting gap.) If the strange quark mass is heavy
enough to be ignored, then up and down quarks may pair in the two-flavor superconducting (2SC) phase.
Other possible condensation patterns include the CFL-K0 phase [32] and the color-spin locked (CSL)
phase [33]. The magnitude of the gap energy lies between ∼ 50 and 100 MeV. Color superconductivity,
which modifies the equation of state at the order (∆/µ)2 level [34, 35], thus changes the volume energy
by just a few percent. Such a small effect can be safely neglected in present determinations of models for
the equation of state of neutron star matter and strange star matter. This is different for phenomena
involving the cooling by neutrino emission, the pattern of the arrival times of supernova neutrinos,
the evolution of neutron star magnetic fields, rotational (r-mode) instabilities, and glitches in rotation
frequencies of pulsars (see Refs. [26, 27, 36, 37, 38, 39, 40] and references therein). Aside from neutron
star properties, an additional test of color superconductivity may be provided by upcoming cosmic ray

4

Compact Stars: The only “laboratory” for the study of 
cold ultra-dense matter 

They may contain exotic form of matter.
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21

Nathan Ng

Thursday, December 12, 2013



22

Compact Stars

The only “laboratory” for the study of cold ultra-dense 
matter 

Mass ~ 1.4M⊙! ! !
Radius ~ O(10 km)!
Density > !
T < 1 MeV

ρnuclear

http://www.astroscu.unam.mx/neutrones/NS-Picture/NStar/NStar.html

They may contain exotic form of 
matter.

1010.5790
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