Nuclear Pasta

A.S. Schneider¹, C.M. Briggs¹, C.J. Horowitz¹ J. Hughto¹, D.K. Berry²

¹Department of Physics and Nuclear Theory Center Indiana University

²University Information Technology Center Indiana University

Dallas, TX - December 2013

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Nuclear Pasta

Nuclear Physics: determine the equation of state of nuclear matter. It is well established that

- Low densities $(n \ll n_0) \Rightarrow$ isolated nuclei;
- High densities $(n \gtrsim n_0) \Rightarrow$ uniform matter.

So what happens to matter between these two extremes?

Figure: Matter at nuclear saturation density n_0 (left) and one tenth of nuclear saturation density $n_0/10$ (right).

Introduction

Nuclear Pasta

Astrophysics relevance:

- Present in core-collapse supernovae and inner crust of neutron stars.
- Important for the structure, evolution and properties of compact stars.

Not accessible to laboratory experiments.

- High density;
- Low temperatures;
- Large isospin assymetry.

・ロト・西ト・田・・田・ しょうくの

Need to know phases and properties of matter at a large range of densities, proton fractions and temperatures. Different approaches:

- Liquid drop model
- Thomas-Fermi approximation
- Hartree-Fock
- Density functional theory
- Molecular Dynamics (MD)
- Quantum Molecular Dynamics (QMD)

In our case, we use MD to simulate large systems for long times to calculate complex observables.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Introduction	MD Formalism	Topology	Results	Prospects
Formalism				

System of protons and neutrons immersed in a background electron gas.

Nucleons interact through a potential:

$$V_{np}(r_{ij}) = \mathbf{a} e^{-r_{ij}^2/\Lambda} + [\mathbf{b} - \mathbf{c}] e^{-r_{ij}^2/2\Lambda}$$
$$V_{nn}(r_{ij}) = \mathbf{a} e^{-r_{ij}^2/\Lambda} + [\mathbf{b} + \mathbf{c}] e^{-r_{ij}^2/2\Lambda}$$
$$V_{pp}(r_{ij}) = \mathbf{a} e^{-r_{ij}^2/\Lambda} + [\mathbf{b} + \mathbf{c}] e^{-r_{ij}^2/2\Lambda} + \frac{\alpha}{r_{ij}} e^{-r_{ij}/\lambda}$$

 $\lambda=\frac{1}{2k_{\rm F}}\sqrt{\frac{\pi}{\alpha}}$ is the Thomas-Fermi screening length for relativistic electrons.

 $k_{\rm F}=(3\pi^2 n_e)^{1/3}$ is the Fermi momentum and n_e the e^- density.

а	Ь	С	Λ	λ
110 MeV	-26 MeV	24 MeV	$1.25\mathrm{fm}^2$	10 fm

Table: Parameters of the model. λ was arbitrarily decreased to 10 fm.

Introduction	MD Formalism	Topology	Results	Prospects
Formalism				

At low densities model predicts reasonable results for binding energies of finite nuclei.

Nucleus	Monte-Carlo $\langle V_{tot} \rangle$ (MeV)	Experiment (MeV)
16 O	-7.56 ± 0.01	-7.98
40 Ca	$-8.75 {\pm} 0.03$	-8.45
90 Zr	-9.13±0.03	-8.66
208 Pb	-8.2 ± 0.1	-7.86

Table: Binding energies per nucleon in MeV from parameters defined above from Phys Rev C 69 405804

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Formalism

At high densities model predicts that:

- Neutron matter is unbound;
- symmetric nuclear matter saturates ar the correct density $n = 0.16 \text{ fm}^{-3}$;
- energy per nucleon is about -17 MeV.

Figure: Energy per nucleon for symmetric (dashed) and pure-neutron (solid) matter *vs* baryon density *n* at T = 1 MeV. From Phys Rev C 69 405804.

Introduction	MD Formalism	Topology	Results	Prospects
Simulations				

- Number of particles $N = 51\,200$;
- Proton fraction $Y_p = 0.40$: 30 720 neutrons and 20 480 protons;
- Temperature of 1 MeV (approximate infall phase of a SN);
- Cubic box with periodic boundary conditions;
- Start from random at a density of 0.16 fm^{-3} (box side is 68 fm);
- Expand the system at different rates $\dot{\xi}$;
- After expansion starts, side of the box at time t:

$$l(t) = l_0(1 + \dot{\xi}t);$$

• Compare topology the systems stretched at different rates.

Introduction	MD Formalism	Topology	Results	Prospects
Simulations				

◆□▶ ◆昼▶ ◆玉▶ ◆玉 ◆ � ◆ ◆

Configuration of system at density of $n = 0.100 \text{ fm}^{-3}$.

- Golden (left), white (right) isosurfaces with $n_{\rm ch} = 0.030 \, {\rm fm}^{-3}$
- Cream: regions of charge density $n_{\rm ch} > 0.030 \, {\rm fm}^{-3}$

 $n = 0.625 n_0$

 $n = 0.625 n_0$

Configuration of system at density of $n = 0.080 \text{ fm}^{-3}$.

- Golden (left), white (right) isosurfaces with $n_{ch} = 0.030 \, \text{fm}^{-3}$
- Cream: regions of charge density $n_{\rm ch} > 0.030 \, {\rm fm}^{-3}$

Introduction	MD Formalism	lopology	Results	Prospects
Simulations				

Configuration of system at density of $n = 0.050 \text{ fm}^{-3}$.

- Golden (left), white (right) isosurfaces with $n_{\rm ch} = 0.030 \, {\rm fm}^{-3}$
- Cream: regions of charge density $\mathit{n_{\rm ch}} > 0.030\,{\rm fm}^{-3}$

Introduction	MD Formalism	lopology	Results	Prospects
Simulations				

Configuration of system at density of $n = 0.030 \text{ fm}^{-3}$.

- Golden (left), white (right) isosurfaces with $n_{\rm ch} = 0.030 \, {\rm fm}^{-3}$
- Cream: regions of charge density $\mathit{n_{\rm ch}} > 0.030\,{\rm fm}^{-3}$

Introduction	MD Formalism	Topology	Prospects
Simulations			

Configuration of system at density of $n = 0.015 \text{ fm}^{-3}$.

- Golden (left), white (right) isosurfaces with $n_{\rm ch} = 0.030 \, {\rm fm}^{-3}$
- Cream: regions of charge density $\mathit{n_{\rm ch}} > 0.030\,{\rm fm}^{-3}$

Shapes at intermediate densities, $n_0/10 \lesssim n \lesssim n_0/2$, are collectively known as *nuclear pasta*.

What gives rise to the richeness of pasta shapes?

- *Frustration*, *i.e.*, energy scale of nuclear forces and Coulomb forces is comparable;
- Competition between the two forces makes nucleons cluster in complex shapes.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

(日)

Topological Characterization

Minkowski functionals

• $W_1 \propto V$ Volume V; • $W_2 \propto \int_{\partial K} dA$ Surface area A; • $W_3 \propto \int_{\partial K} \left(\frac{\kappa_1 + \kappa_2}{2}\right) dA$ Mean breadth B; • $W_4 \propto \int_{\partial K} (\kappa_1 \cdot \kappa_2) dA$ Euler characteristic χ .

 κ_1 and κ_2 are the principal curvatures on ∂K the bounding surface of K.

 $\chi =$ (# isolated regions) - (# tunnels) + (# cavities)

Use B/A and χ/A as measures to compare systems.

э

Results

Figure: Normalized mean breadth B/A as a function of density n for different stretch rates. The simulations contain 51 200 nucleons with $Y_p = 0.40$ at 1 MeV.

Results

Figure: Normalized Euler characteristic χ/A as a function of density *n* for different stretch rates. The simulations contain 51 200 nucleons with $Y_p = 0.40$ at 1 MeV.

Figure: Static structure factor S(q) of protons.

э

Figure: Static structure factor S(q) of neutrons.

э

Figure: Static structure factor S(q) of protons.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Figure: Static structure factor S(q) of neutrons.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Introduction	MD Formalism	Topology	Results	Prospects
Prospects				

Recent developments:

- Bring finite size effects under control (larger simulations).
- Started exploring parameter space using other (lower) proton fractions.
- Obtain static structure factors of pasta phases.

Future:

- Obtain shear viscosity, bulk viscosity, shear modulus and breaking strain of different pasta structures.
- Add other parameters and/or momentum and spin dependence to effective potential.

Introduction	MD Formalism	Topology	Results	Prospects
Observables				

From Jose Pons et al. . Nature Physics 9 431 (2013)

- Observations of isolated X-ray pulsars.
- NS with $|\mathbf{B}| \gtrsim 10^{13} \,\mathrm{G}$ and $P \lesssim 12 \,\mathrm{s}$.
- Problem:
 - Pulsars should spin down rapidly.
 - $P \sim 100 \text{ s in about } T \lesssim 10\,000 \text{ years.}$
 - Such pulsars are not observed.
- High resistive layer in the inner crust of a NS limits spin period to about 10 20 s.
- This may be the first observational evidence for an amorphous inner crust. Possibly due to the existence of "nuclear pasta".

Observables

- Decay of magnetic fields (Jose Pons et al. .)
- Thermal conductivity and electrical conductivity.
 - Depends on coherent *e*⁻-pasta scattering.
 - Important for NS crust properties.

Shear modulus

- Response to small deformations of simulation volume.
- Determines NS oscillation frequencies.
- Shear viscosity and bulk viscosity
 - Depends on hysteresis of pasta shapes with density changes.
 - May be important for damping of NS r-mode oscillations.
- Breaking strain
 - Response to large deformations of simulation volume.
 - Important for star quakes, magnetar giant flares and mountain heights.
- ν-oppacity
 - Depends on coherent ν -pasta scattering.
 - Important for SN simulations as $\lambda_{\nu} \sim$ pasta sizes.