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Nuclear Pasta

Nuclear Physics: determine the equation of state of nuclear maer.
It is well established that

Low densities (n ≪ n0) ⇒ isolated nuclei;
High densities (n ≳ n0) ⇒ uniform maer.

So what happens to maer between these two extremes?

Figure: Maer at nuclear saturation density n0 (le) and one tenth of
nuclear saturation density n0/10 (right).
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Nuclear Pasta

Astrophysics relevance:

Present in core-collapse
supernovae and inner crust of
neutron stars.

Important for the structure,
evolution and properties of
compact stars.

Not accessible to laboratory
experiments.

High density;

Low temperatures;

Large isospin assymetry.
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Nuclear Pasta

Need to know phases and properties of maer at a large range of
densities, proton fractions and temperatures.
Different approaches:

Liquid drop model

Thomas-Fermi approximation

Hartree-Fock

Density functional theory

Molecular Dynamics (MD)

antum Molecular Dynamics (QMD)

In our case, we use MD to simulate large systems for long times to
calculate complex observables.
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Formalism

System of protons and neutrons immersed in a background electron
gas.
Nucleons interact through a potential:

Vnp(rij) = ae−r2ij/Λ + [b− c]e−r2ij/2Λ

Vnn(rij) = ae−r2ij/Λ + [b+ c]e−r2ij/2Λ

Vpp(rij) = ae−r2ij/Λ + [b+ c]e−r2ij/2Λ +
α

rij
e−rij/λ

λ = 1
2kF

√
π
α is the Thomas-Fermi screening length for relativistic

electrons.
kF = (3π2ne)1/3 is the Fermi momentum and ne the e− density.

a b c Λ λ

110MeV -26MeV 24MeV 1.25 fm2 10 fm

Table: Parameters of the model. λ was arbitrarily decreased to 10 fm.
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Formalism

At low densities model predicts reasonable results for binding
energies of finite nuclei.

Nucleus Monte-Carlo ⟨Vtot⟩ (MeV) Experiment (MeV)
16O -7.56±0.01 -7.98
40Ca -8.75±0.03 -8.45
90Zr -9.13±0.03 -8.66
208Pb -8.2 ± 0.1 -7.86

Table: Binding energies per nucleon in MeV from parameters defined
above from Phys Rev C 69 405804
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Formalism

At high densities model predicts
that:

Neutron maer is unbound;

symmetric nuclear maer
saturates ar the correct
density n = 0.16 fm−3;

energy per nucleon is about
−17MeV.

Figure: Energy per nucleon for
symmetric (dashed) and pure-neutron
(solid) maer vs baryon density n at
T = 1MeV. From Phys Rev C 69
405804.
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Simulations

Number of particles N = 51200;

Proton fraction Yp = 0.40: 30 720 neutrons and 20 480 protons;

Temperature of 1MeV (approximate infall phase of a SN);

Cubic box with periodic boundary conditions;

Start from random at a density of 0.16 fm−3 (box side is 68 fm);

Expand the system at different rates ξ̇;

Aer expansion starts, side of the box at time t:

l(t) = l0(1 + ξ̇t);

Compare topology the systems stretched at different rates.
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Simulations
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Simulations

Configuration of system at density of n = 0.100 fm−3.

Golden (le), white (right) isosurfaces with nch = 0.030 fm−3

Cream: regions of charge density nch > 0.030 fm−3
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Simulations

Configuration of system at density of n = 0.080 fm−3.

Golden (le), white (right) isosurfaces with nch = 0.030 fm−3

Cream: regions of charge density nch > 0.030 fm−3
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Simulations

Configuration of system at density of n = 0.050 fm−3.

Golden (le), white (right) isosurfaces with nch = 0.030 fm−3

Cream: regions of charge density nch > 0.030 fm−3
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Simulations

Configuration of system at density of n = 0.030 fm−3.

Golden (le), white (right) isosurfaces with nch = 0.030 fm−3

Cream: regions of charge density nch > 0.030 fm−3
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Simulations

Configuration of system at density of n = 0.015 fm−3.

Golden (le), white (right) isosurfaces with nch = 0.030 fm−3

Cream: regions of charge density nch > 0.030 fm−3



. . . . . .

Introduction MD Formalism Topology Results Prospects

Simulations

Shapes at intermediate densities, n0/10 ≲ n ≲ n0/2, are collectively
known as nuclear pasta.

What gives rise to the richeness of pasta shapes?

Frustration, i.e., energy scale of nuclear forces and Coulomb
forces is comparable;

Competition between the two forces makes nucleons cluster in
complex shapes.
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Topological Characterization

Minkowski functionals

W1 ∝ V Volume V;

W2 ∝
∫
∂K dA Surface area A;

W3 ∝
∫
∂K

(
κ1+κ2

2

)
dA Mean breadth B;

W4 ∝
∫
∂K (κ1 · κ2) dA Euler characteristic χ.

κ1 and κ2 are the principal curvatures on ∂K the bounding surface
of K.

χ = (# isolated regions) - (# tunnels) + (# cavities)

Use B/A and χ/A as measures to compare systems.
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Results
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Figure: Normalized mean breadth B/A as a function of density n for
different stretch rates. The simulations contain 51 200 nucleons with
Yp = 0.40 at 1MeV.
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Results
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Figure: Normalized Euler characteristic χ/A as a function of density n for
different stretch rates. The simulations contain 51 200 nucleons with
Yp = 0.40 at 1MeV.
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Results

Static structure factor for different structures of the pasta phase.
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Figure: Static structure factor S(q) of protons.
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Results

Static structure factor for different structures of the pasta phase.
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Figure: Static structure factor S(q) of neutrons.
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Results

Static structure factor for different structures of the pasta phase.
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Figure: Static structure factor S(q) of protons.
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Results

Static structure factor for different structures of the pasta phase.
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Figure: Static structure factor S(q) of neutrons.



. . . . . .

Introduction MD Formalism Topology Results Prospects

Prospects

Recent developments:

Bring finite size effects under control (larger simulations).

Started exploring parameter space using other (lower) proton
fractions.

Obtain static structure factors of pasta phases.

Future:

Obtain shear viscosity, bulk viscosity, shear modulus and
breaking strain of different pasta structures.

Add other parameters and/or momentum and spin dependence
to effective potential.
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Observables

From Jose Pons et al. . Nature Physics 9 431 (2013)

Observations of isolated X-ray pulsars.

NS with |B| ≳ 1013 G and P ≲ 12 s.
Problem:

Pulsars should spin down rapidly.
P ∼ 100 s in about T ≲ 10 000 years.
Such pulsars are not observed.

High resistive layer in the inner crust of a NS limits spin period
to about 10− 20 s.

This may be the first observational evidence for an amorphous
inner crust. Possibly due to the existence of “nuclear pasta”.
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Observables

Decay of magnetic fields (Jose Pons et al. .)
Thermal conductivity and electrical conductivity.

Depends on coherent e−-pasta scaering.
Important for NS crust properties.

Shear modulus
Response to small deformations of simulation volume.
Determines NS oscillation frequencies.

Shear viscosity and bulk viscosity
Depends on hysteresis of pasta shapes with density changes.
May be important for damping of NS r-mode oscillations.

Breaking strain
Response to large deformations of simulation volume.
Important for star quakes, magnetar giant flares and mountain
heights.

ν-oppacity
Depends on coherent ν-pasta scaering.
Important for SN simulations as λν ∼ pasta sizes.
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