Mean field approach to the structure and properties of neutron star matter

Toshiki Maruyama (JAEA) Minoru Okamoto (Univ. of Tsukuba & JAEA) Nobutoshi Yasutake (Chiba Inst. of Tech.) Toshitaka Tatsumi (Kyoto Univ.)

Matter of neutron stars

 $\begin{array}{l} \text{Density} \\ \approx 0 \cdots \approx 10 \rho_0 \end{array}$

Composition

- Nucleons + leptons
- ... + mesons, hyperons
- quarks + gluons + leptons

Structure & correlation

- uniform
- crystal
- pasta
- amorphous
- pairing
-

First-order phase transition and EOS

• Single component congruent

(e.g. water) Maxwell construction **satisfies** the Gibbs cond. $T^{I}=T^{II}$, $P^{I}=P^{II}$, $\mu^{I}=\mu^{II}$.

Many components non-congruent

(e.g. water+ethanol) Gibbs cond. $T^{I}=T^{II}$, $P_{i}^{I}=P_{i}^{II}$, $\mu_{i}^{I}=\mu_{i}^{II}$. **No** Maxwell construction *!*

• Many charged components (nuclear matter) Gibbs cond. $T^{I}=T^{II}$, $\mu_{i}^{I}=\mu_{i}^{II}$. No Maxwell construction ! No constant pressure ! Microscopic structure affects $\frac{dP_{i}}{dr} = -\frac{\partial U_{i}(\rho_{i};r)}{\partial r}$

This is the case for nuclear matter !

(1) Low-density nuclear matter

RMF + Thomas-Fermi model

Nucleons interact with each other via coupling with σ , ω , ρ mesons. Simple but realistic enough.

Saturation property of symmetric nuclear matter : minimum energy $E/A \approx -16$ MeV at $\rho_B \approx 0.16$ fm⁻³.

Binding energies \downarrow , proton fractions \downarrow , and density profiles \rightarrow of nuclei are well reproduced.

Pressure vs density of uniform matter

[Phys.Rev. C72 (2005) 015802]

- Total pressure is positive. Monotonically increases with density and temperature. • Baryon partial pressure has van der Waals behavior \rightarrow mechanically unstable ragion (dP/de < 0)
- region $(dP/d\rho < 0)$. → First order phase transition.
- → Inhomogeneous

Numerical calculation of mixed-phase structure

Assume regularity in structure: divide whole space into equivalent and neutral cells with a geometrical symmetry (3D: sphere, 2D : cylinder, 1D: plate).

 \rightarrow Wigner-Seitz approx.

- Give a baryon density ρ_B and a geometry (Unif/Dropl/Rod/...).
- Solve the field equations numerically. Optimize the cell size (choose free-energy-minimum).
- Choose the free-energy-minimum geometry among 7 cases (Unif (I), Droplet, Rod, Slab, Tube, Bubble, Unif (II)),

which are called "pasta" structures.

RMF + Thomas-Fermi model

$$\begin{array}{ll} \text{Lagrangian} & \text{Nucl} \\ L = L_N + L_M + L_e, & \text{via } c \\ L_N = \overline{\Psi} \Biggl[i \gamma^{\mu} \partial_{\mu} - m_N^* - g_{\omega N} \gamma^{\mu} \omega_{\mu} - g_{\rho N} \gamma^{\mu} \vec{\tau} \vec{b}_{\mu} - e \frac{1 + \tau_3}{2} \gamma^{\mu} V_{\mu} \Biggr] \Psi & \text{Simple} \\ L_M = \frac{1}{2} (\partial_{\mu} \sigma)^2 - \frac{1}{2} m_{\sigma}^2 \sigma^2 - U(\sigma) - \frac{1}{4} \omega_{\mu\nu} \omega^{\mu\nu} + \frac{1}{2} m_{\omega}^2 \omega_{\mu} \omega^{\mu} - \frac{1}{4} \vec{R}_{\mu\nu} \vec{R}^{\mu\nu} + \frac{1}{2} m_{\rho}^2 \vec{R}_{\mu} \vec{R}^{\mu}, \\ L_e = -\frac{1}{4} V_{\mu\nu} V^{\mu\nu} + \overline{\Psi}_e \Biggl[i \gamma^{\mu} \partial_{\mu} - m_e + e \gamma^{\mu} V_{\mu} \Biggr] \Psi_e, & (F_{\mu\nu} \equiv \partial_{\mu} F_{\nu} - \partial_{\nu} F_{\mu}) \\ m_N^* = m_N - g_{\sigma N} \sigma, & U(\sigma) = \frac{1}{3} b m_N (g_{\sigma N} \sigma)^3 + \frac{1}{4} c (g_{\sigma N} \sigma)^4 \end{array}$$

Nucleons interact with each other via coupling with σ , ω , ρ mesons. Simple but feasible!

For fermions, we employ Thomas-Fermi approx. with finite T

$$f_{i=n,p}(\mathbf{r};\mathbf{p},\mu_{i}) = \left(1 + \exp\left[\left(\sqrt{p^{2} + m_{i}^{*}(\mathbf{r})^{2}} - \sqrt{p_{Fi}(\mathbf{r})^{2} + m_{i}^{*}(\mathbf{r})^{2}}\right)/T\right]\right)^{-1},$$

$$f_{e}(\mathbf{r};\mathbf{p},\mu_{e}) = \left(1 + \exp\left[\left(p - (\mu_{e} - V_{C}(\mathbf{r}))\right)/T\right]\right)^{-1},$$

$$\rho_{i=p,n,e,\nu}(\mathbf{r}) = 2\int_{0}^{\infty} \frac{d^{3}p}{(2\pi)^{3}}f_{i}(\mathbf{r};\mathbf{p},\mu_{i}),$$

$$\mu_{n} = \sqrt{p_{Fn}(\mathbf{r})^{2} + m_{N}^{*}(\mathbf{r})^{2}} + g_{\omega N}\omega_{0}(\mathbf{r}) - g_{\rho N}R_{0}(\mathbf{r}), \qquad \mu_{n} = \mu_{p} + \mu_{e},$$

$$\mu_{p} = \sqrt{p_{Fp}(\mathbf{r})^{2} + m_{N}^{*}(\mathbf{r})^{2}} + g_{\omega N}\omega_{0}(\mathbf{r}) + g_{\rho N}R_{0}(\mathbf{r}) - V_{C}(\mathbf{r}),$$

$$\int_{V} d^{3}r \left[\rho_{p}(\mathbf{r}) + \rho_{n}(\mathbf{r})\right] = \text{const}, \qquad \int_{V} d^{3}r\rho_{p}(\mathbf{r}) = \int_{V} d^{3}r\rho_{e}(\mathbf{r}),$$

From $\partial_{\mu} \Big[\partial L / \partial (\partial_{\mu} \phi) \Big] - \partial L / \partial \phi = 0,$ $(\phi = \sigma, \omega_{\mu}, R_{\mu}, V_{\mu}, \Psi),$ $-\nabla^2 \sigma(\mathbf{r}) + m_{\sigma}^2 \sigma(\mathbf{r}) = g_{\sigma N}(\rho_n^{(s)}(\mathbf{r}) + \rho_p^{(s)}(\mathbf{r})) - \frac{dU}{d\sigma}(\mathbf{r}),$ $-\nabla^2 \omega_0(\mathbf{r}) + m_{\omega}^2 \omega_0(\mathbf{r}) = g_{\omega N}(\rho_p(\mathbf{r}) + \rho_n(\mathbf{r})),$ $-\nabla^2 R_0(\mathbf{r}) + m_{\rho}^2 R_0(\mathbf{r}) = g_{\rho N}(\rho_p(\mathbf{r}) - \rho_n(\mathbf{r})),$ $\nabla^2 V_C(\mathbf{r}) = 4\pi e^2 \rho_{ch}(\mathbf{r}),$

1 Interaction between fermions

Condition of a fermion \rightarrow

Density profiles in WS cells

Wigner Seitz approx: assume geometrical symmetry. fast computation.

Fully 3D RMF+ThomasFermi calculations

[Phys.Lett. B713 (2012) 284]

$$Y_p = Z/A = 0.5$$

EOS has a similar behavior to that of the conventional studies.

Novelty:

fcc lattice of droplets can be the ground state at some density.
← Not the Coulomb interaction among "point particles" but the change of the droplet size is relevant.

EOS of nuclear matter

Before and after clusterization

Since baryons and electron are **not congruent**, baryon partial system can clusterized. Negative pressure (at $\rho_B < \rho_0$) is not favored.

→ mixed phase (clustering)

With pasta structures, baryon partial pressure increases. However, at some density just below ρ_0 , uniform matter is favored due to **finite size effects** (surface and Coulomb).

Low-density nuclear matter is a mixed phase of liquid-gas, which exhibits pasta structures.

EOS with pasta structures in nuclear matter at $T \ge 0$

Pasta structures appear at $T \le 10$ MeV

coexistence region (Maxwell for Y_p =0.5 and bulk Gibbs for Y_p <0.5) is metastable.

Uniform matter is allowed in some coexistence region due to finite-size effects.

Symmetric matter $Y_p=0.5$

Asymmetric matter $Y_{\rho}=0.3$

(2) Kaon condensation

[Phys. Rev. C 73, 035802]

K single particle energy (model-independent form)

$$\varepsilon_{\pm}(\mathbf{p}) = \sqrt{p^2 + m_K^{*2} + ((\rho_n + 2\rho_p)/4f^2)^2} \pm (\rho_n + 2\rho_p)/4f^2,$$

$$m_K^{*2} = m_K^2 - \Sigma_{KN}(\rho_n + 2\rho_p)/4f^2,$$

$$\mu_K = \varepsilon_-(p=0) = \mu_n - \mu_p = \mu_e$$
 Threshold condition of condensation

EOM for fields (RMF model)

Kaon field $K(\mathbf{r})$ added.

$$\nabla^{2} \sigma = m_{\sigma}^{2} + \frac{dU_{\sigma}}{d\sigma} - g_{\sigma N} \left(\rho_{p}^{s} + \rho_{n}^{s}\right) - 4g_{\sigma K} m_{K} f_{K}^{2} K^{2}$$

$$\nabla^{2} \omega_{0} = m_{\omega}^{2} \omega_{0} - g_{\omega N} \left(\rho_{n} + \rho_{p}\right) - 2g_{\omega K} m_{K} f_{K}^{2} K^{2} \left(\mu_{K} - V_{C} + g_{\omega K} \omega_{0} + g_{\rho K} R_{0}\right)$$

$$\nabla^{2} R_{0} = m_{\rho}^{2} R_{0} - g_{\rho N} \left(\rho_{n} - \rho_{p}\right) - 2g_{\rho K} m_{K} f_{K}^{2} K^{2} \left(\mu_{K} - V_{C} + g_{\omega K} \omega_{0} + g_{\rho K} R_{0}\right)$$

$$\nabla^{2} K = \left[m_{K}^{*2} - \left(\mu_{K} - V_{C} + g_{\omega K} \omega_{0} + g_{\rho K} R_{0}\right)\right] K$$

$$\nabla^{2} V_{C} = 4\pi e^{2} \rho_{ch}, \qquad \rho_{ch} = \rho_{p} - \rho_{e} - \rho_{K}$$

$$\rho_{K} = 2\left(\mu_{K} - V_{C} + g_{\omega K} \omega_{0} + g_{\rho K} R_{0}\right) K^{2}$$

$$\mu_{e} = \left(3\pi\rho_{e}\right)^{1/3} + V_{C}$$

$$\mu_{n} = \sqrt{k_{Fn}^{2} + m_{N}^{*2}} + g_{\omega N} \omega_{0} - g_{\rho N} R_{0}$$

$$\mu_{p} = \sqrt{k_{Fp}^{2} + m_{N}^{*2}} + g_{\omega N} \omega_{0} + g_{\rho N} R_{0} - V_{C}$$

(3) Hadron-quark phase transition

[Phys. Rev. D 76, 123015]

- At 2--3 ρ_0 , hyperons are expected to appear.
 - \rightarrow Softening of EOS

 \rightarrow Maximum mass of neutron star becomes less than 1.4 solar mass and far from 2 .0 solar mass.

 \rightarrow Contradicts the obs >1.5 $M_{\rm sol}$

Schulze et al, PRC73 (2006) 058801

EOS of matter

Full calculation is between the Maxwell construction (local charge neutral) and the bulk Gibbs calculation (neglects the surface and Coulomb).

Closer to the Maxwell.

Structure of compact stars

Mass-radius relation of a cold neutron star

Full calculation with pasta structures yields similar result to the Maxwell construction.

Maximum masses are almost the same for 3 cases.

We need to improve largely the quark EOS or hadron EOS to get $\sim 2M_{\odot}$

Another model for quark phase: Schwinger-Dyson eq.

arXiv:1309.1954

[Yasutake, etal, arXiv1309:1954]

Summary

Low-density matter:

Mixed phase from the beginning (from low density). Does not affect the structure and mass of neutron stars. But important for neutrino emission and crust properties.

Kaon condensation:

crucial for the structure and mass of neutron stars. Depends on the kaons potential.

