Ben Gurion University, Israel

THE ISOTROPY PROBLEM OF TEV COSMIC RAYS

Rahul Kumar

David Eichler (PhD supervior)

Texas Symposium, 2013

Anisotropy measurement by IceCube

IceCube reports the sidereal first harmonic in the CR intensity average over declination range -25⁰ to -72⁰

 $\delta_{obs} = (7.9 \pm 0.1_{\text{stat}} \pm 0.3_{\text{sys}}) \times 10^{-4}$

 $\delta_{obs} = (3.7 \pm 0.7_{\text{stat}} \pm 0.7_{\text{sys}}) \times 10^{-4}$

Abbasi et al., ApJ (2012)

Why is it a problem?

Propagation models constrain diffusion rate to fit B/C

 $D(E) \simeq 10^{28} (E/GeV)^{1/3} cm^2 s^{-1} D_{28}$

The anisotropy in 1-1000TeV energy band predicted by Isotropic diffusion with a steep source distribution is more than an order of magnitude higher than the observations

Why Isotropic diffusion?

B/C does not constrain diffusion rate parallel to the Galactic plane

S_T: Pulsars (Trotta et al., 2011)

Radial Distribution

- S_c: SNRs (Case & Bhattacharya, 1998)
- S_s: Gamma ray Gradient (Strong et al., 2000)

Anisotropic Diffusion of Cosmic Rays

A partially ordered Galactic magnetic field breaks the isotropy of diffusion

A general anisotropic diffusion of the cosmic rays is described by

$$\frac{\partial N}{\partial t} = \frac{\partial}{\rho \partial \rho} \rho D_{\rho} \frac{\partial N}{\partial \rho} + \frac{\partial}{\rho^2 \partial \phi} D_{\phi} \frac{\partial N}{\partial \phi} + \frac{\partial}{\partial z} D_z \frac{\partial N}{\partial z} + Q(E) \delta(t) \delta(\rho - \rho_0) \delta(\phi) \delta(z - z_s) / \rho_0$$

Cosmic Ray Flux Anisotropy

□ Flux from a source: $N(\rho, \phi, z) = G(z, t)N_0(\rho, \phi, t)$

$$G \simeq \frac{1}{\sqrt{2\pi Dt}} \exp\left(-\frac{(z-z_s)^2}{4Dt}\right) (1+\tilde{t})^{1.25} \exp(-(1.5\tilde{t})^{0.97}) \qquad \tilde{t} = 2Dt/H^2$$

$$N_0(\rho,\phi,t) = \frac{\Theta(t)}{2\pi D_\perp t} \frac{Q(E)}{H} \exp\left(-\frac{\rho^2 + \rho_0^2}{4D_\perp t}\right) \left[\frac{1}{2}I_0\left(\tilde{\rho}\right) + \sum_{n=1}^{\infty} \cos(n\phi)I_{\nu(n)}\left(\tilde{\rho}\right)\right]$$

$$\tilde{\rho} = \rho\rho_0/2D_\perp t, \quad \nu(n) = n\sqrt{D_{\parallel}/D_\perp}$$

$$\Box \text{ Anisotropy:} \quad \vec{\delta} = 3 \left(D_{\rho} \frac{\partial N_{tot}}{\partial \rho} \hat{\rho} + D_{\phi} \frac{\partial N_{tot}}{\rho \partial \phi} \hat{\phi} + D_{z} \frac{\partial N_{tot}}{\partial z} \hat{z} \right) / cN_{tot}$$

Use the Monte Carlo method to randomly place sources in the Galaxy with a pulsar-like source distribution (a steep distribution) and source rate 1 in every 100 years.

Anisotropy at 20 TeV

Source rate : 1 per 100 yr H=5 kpc

Isotropic diffusion

- Radial anisotropy dominates for a steep source distribution
- Radial anisotropy decreases as the radial diffusion rate is reduced
- Azimuthal discreteness anisotropy becomes the dominant contributor to the total anisotropy for $D_{\rho} \gtrsim D^{iso}/10$

$$-\delta_r - \delta_z - \delta_{\varphi}$$

Anisotropic diffusion : $D_{\rho} = D^{iso}/10$

Anisotropy vs. Energy

- Total anisotropy at all energies goes down as the radial diffusion rate is reduced
- Fluctuation increases with decreasing radial diffusion rate since the total number of contributing sources becomes smaller
- Non-monotonic dependence of anisotropy on energy is due to discreteness of the sources

hotopositive de la construction de la construction

Isotropic diffusion

Anisotropic diffusion : $D_{\rho} = D^{iso}/50$

Spiral Arms

- Star formation in the Galaxy takes place in spiral arms
- We lie in Local spur, between two spiral arms Sagittarius and Perseus
- Sun completes one revolution in about 280 Myr relative to the spiral arms
- CRs are assumed to diffuse in the corotating frame of the Sun
- Four spiral arms, two major and two minor, are assumed

Xu et al., Science (2006)

A tail-like distribution of sources from spiral front is assumed to model spiral arms:

P(d) = exp(-d/300 pc)

Anisotropy at 20 TeV

- Anisotropy is dependent on our location with respect to the spiral arms
- Even for isotropic diffusion, near the inner edge of the spiral arm flux cancellation causes a dip in the radial anisotropy
- Anisotropy is smaller in the inter-arm regions due to distantness of the sources and flux cancellation

Anisotropy vs. Energy

- Near a spiral arm anisotropy is higher due to proximity of sources and the fluctuation is smaller due to larger number of contributing sources
- Fluctuation in the dip period is comparatively large

Anisotropic diffusion : $D_{\rho} = D^{iso}/50$

Nearby Supernovae

SNR	Distance (kpc)	Age (Myr)	Anisotropy at 1 TeV
Geminga	0.25	0.3	0
Monogem	0.3	0.08	0.0004
Vela	0.25	0.01	0.025
Cygnus loop	0.8	0.015	0.0001
Vela Jr.	0.21	0.001	0.034

Under the assumption of **Isotropic** diffusion anisotropy due to Vela and Vela Jr. is inconsistent with the measurement

Conclusions

- Large scale radial anisotropy in case of a steep distribution is marginalized by a smaller radial diffusion rate and makes the case of a steep distribution nearly as good as flat distributions.
- Using the diffusion rate that reproduces B/C ratio, the observed anisotropy can be reproduced, but only with a small probability(~5%)
- The surprisingly low large scale anisotropy in TeV band could be due to our location in the Galaxy with respect to the spiral arms and small radial diffusion rate
- Isotropic diffusion implies a large anisotropy from Vela SNR, strengthening the case of anisotropic diffusion