

Observation of two young supernova remnants (SNRs) with H.E.S.S.

D. Fernandez, I. Oya, C. Trichard, A. Fiasson, V. Marandon, M. Renaud, G. Vasileiadis

XXVII Texas Symposium, HEA-Galactic session December 08-13, 2013

High - Very High Energy (HE-VHE) features of SNRs interacting with Molecular Clouds (MCs):

SNRs interacting with MCs: W28N, W49B, W51C, IC443, W44

- Luminous GeV & weak TeV sources
- Spectral break at a few GeV, steep at VHE

Ackermann et al., 2013

SNR	∆Index	E _{break} (GeV)
W28N	0.65±0.30	1.0±0.2
W49B	0.72±0.20	4.8±1.6
IC443	0.63±0.11	3.3±0.6
W44	0.96±0.10	1.9±0.2
W51C	1.3±0.1	1.7±0.5
	0.6-1.3	1-5 GeV

Abdo et al., 2009-2010 Aleskic et al., 2012

CR spectral break not naturally predicted by Diffusive Shock Acceleration (DSA) theory

The H.E.S.S. experiment

Phase I operating since 2003

~10 km a.s.l.

First interaction with nuclei of atmosphere at about 20 km height

Cherenkov light emission under characteristic angle θ_{C}

Angular resolution ~ 0.1° Energy resolution ~ 15% Effective area ~ 10⁵-10⁶ m²

Primary particle

Muons

Hadron

H.E.S.S. II: lower energy threshold => 40 GeV

W44: a SNR-MC undetected at VHE

Will be further explored with H.E.S.S. II

G349.7+0.2: MWL data

- **Young** SNR \approx 3000 yrs (Lazendic et al. 2005)
- **Very distant** SNR: $D \approx 22$ kpc OH masers (Frail et al. 1996) HI absorption (Lazendic et al. 2005)
- One of the 3 brightest galactic SNR in radio & in X-rays Similar Radio & X morphologies Ø≈2.5' (Shaver et al., 1985; Lazendic et al., 2005; Green 2009)
- Interacting with a MC (Dubner et al., 2004) H₂ lines (*Hewitt et al. 2009*) 5 OH masers (1720 MHz) (Frail et al. 1996)
- Fermi-LAT counterpart (Castro & Slane, 2010)

D. Fernandez - 09/12/2013

Crosses: OH maser

G349.7+0.2: H.E.S.S. & Fermi-LAT results

Time exposure: 113 h Significance: 6.6σ (peak: 7σ)

- Point-like source

- 95% CL UL on the H.E.S.S. source extension: $\sigma_{ext}^{95\%} < 0.04^{\circ}$

D.FERNANDEZ - 28/10/2013

H.E.S.S. data compatible with:

- Broken Power Law spectrum:
 ΔΓ = 0.6 ± 0.3, E_{break}~ 100 GeV
- Power Law ($\Gamma = \Gamma_{GeV} = 2.2$) spectrum with Exponential cutoff:

E_{cut} = 300 - 700 GeV @ 95% CL

G349 is one of the most luminous Galactic VHE SNR L_{G349} (E > 400 GeV) ~ $L_{RX J1713}$ (E > 400 GeV)

SNR G349.7+0.2

- Furthest VHE detection of a Galactic SNR
- One of the **most luminous** Galactic VHE SNR
- One of the very few **young** SNRs known to be interacting
- Unresolved VHE emission
- MWL evidences of interaction with clumps
- Spectral break at ~ 100 GeV
 <u>OR</u>
 spectral cutoff at 300-700 GeV (95% CL)
- Energetics & Hydro compatible with emission from a localized region of the shell interacting with dense material n_H W_p~ 10⁵² d_{22 kpc}² erg cm⁻³

8

Puppis A: MWL data

 $Ø = 50' = 0.8^{\circ}$ (Green, 2009)

4450 ± 700 yrs (CCO motion & ejecta O knots) Becker & al., 2012

~ 2.2 kpc (HI & CO) (Dubner & Arnal 1988; Reynoso & al., 1995, 2003)

X density gradient NE-SW (x4) (Dubner & al., 2013)

GeV emission (Hewitt & al., 2012)

Highly inhomogeneous ISM

D. Fernandez - 09/12/2013

Puppis A: MWL data

D. Fernandez - 09/12/2013

Puppis A: MWL data

Northern Knot: cloudlet: ~ 18 cm⁻³

D. Fernandez - 09/12/2013

Puppis A: H.E.S.S. Results

Time exposure : 24 h (2011-2013)

- \Rightarrow Very few excess counts in the analysis region : $R_{ON} = 0.38^{\circ} = R_{Fermi-LAT Best Fit}$ BUT no significant excess is found
- ⇒ Expected spectral break/cutoff at 99% CL from H.E.S.S. analyses

Puppis A: H.E.S.S. Results

⇒ Power-law spectrum with $\Gamma = \Gamma_{Fermi-LAT} = 2.1$ in 0.2-10 TeV: Excluded at 5σ CL

⇒ Power-law with exponential cutoff spectrum: $E_{cut} \le 450 \text{ GeV} @ 99\% \text{ CL}$

Puppis A: H.E.S.S. Results

Puppis A is a young SNR

⇒ Unexpected lack of VHE signal from Puppis A

Is it older than we think?

- 4450 ± 700 yr : CCO motion (Becker & al., 2012) 3700 ± 300 yr : O knots from ejecta (Winkler & al, 1988, Becker & al., 2012) 6000 - 8000 yr : X-ray temperature (Winkler & Kirshner, 1985) large size R_{SNR}= 15 pc @ 2kpc
- Is it because of interaction with dense material ?
 => Strong wave damping & escape of VHE CRs from the SNR shock ? (Malkov & al, 2012; Ohira & al, 2010; Ptuskin & Zirakashvili, 2005)

CONCLUSION

- presumably resulting from the localized interaction of the SNR blast-wave with dense material of MC
- Unexpected lack of TeV emission from SNR Puppis A Strong wave damping ?

Thank you for your attention.

No clear evidence of a SNR-MC shock (no OH maser...)

But many indications of interactions with clouds :

- Asymmetrical expansion => inhomogeneous medium
- 2 bright X-radio knots => the shock has engulfed dense cloudlets
- CO & HI components coincident with the SNR rims
- Good IR/X-ray correlation => thermal emission of swept-up IS dust
- SW: morphology & flat radio index suggest a shock
 + CO component