#### Comparison of the Acceleration Mechanisms in Fermi Bubbles

#### D.Chernyshov\* K.S.Cheng, V.A.Dogiel, C.M.Ko

\*Lebedev's Institute of Physics, Moscow, Russia

27th Texas Symposium on Relativistic Astrophysics

#### Fermi Bubbles

Bubbles show energetic spectrum and sharp edges



Dobler et al., 2010,

27th Texas Symposium on Relativistic Astrophysics Su et al., 2010

#### Counterparts: radio

- Finkbeiner 2004. "WMAP Haze"
- Planck Collab., 2012



# Fermi bubbles: properties

- Hard synchrotron: spectral index -2.1
- Sharp edges: shock? Low diffusion? Magnetic wall?
- Uniform brightness: concentration near the edge?
- Position: central BH-related? Starburst related?
- Probably not unique: apart from Cen A, X-Ray and radio "bubbles" in Markarian 6, Circinus
- Good corellation "radio gamma-rays" (Dobbler, 2012) + spectral softening to high lat (Dobbler, 2012; or not? Hooper & Slatyer, 2013) – leptons?

## Possible models

| Hadronic                                                                                                                                                                                                            | Leptonic                                                                                                                                                                                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $p + p \rightarrow 2\gamma + e^{\pm}$                                                                                                                                                                               | IC + synchrotron                                                                                                                                                                                                                                                     |
| <ul> <li>a) Crocker &amp; Aharonian, 2010</li> <li>Crocker, 2012</li> <li>SN activity + magnetic walls</li> <li>b) Istomin, 2011</li> <li>Jet, "ballistic"</li> <li>c) Fujita et al, 2013</li> <li>Shock</li> </ul> | <pre>a)Su et al., 2010 Starburst or jet =&gt; giant shock b)Guo &amp; Mathews,2011; Yang et al., 2012 Jet + anisotropic diffusion, "ballistic" c)Mertsch &amp; Sarkar, 2011 Fermi-II acceleration d)Cheng et al., 2011 Stellar captures =&gt; series of shocks</pre> |
| Shape – why uniform?<br>X-Ray emission?<br>Synchrotron – secondaries if young?<br>H > 50uG                                                                                                                          | Should be young or accelerated<br>Synchrotron – young, stochastic or series                                                                                                                                                                                          |

### Common points



Supersonic outflow

Subsonic outflow

In-situ acceleration

In all cases we expect appearance of an acceleration zone: shockwave should be young (< 1 Myr), turbulence leads to stochastics The site is giant: may affect the whole Galaxy! (See eg. Cheng et al, 2012 – CRs above the knee)

## Acceleration

- From background plasma
  - Need to worry about injection
  - Can provide a lot of particles
- From pre-accelerated electrons
  - Electrons are already 'injected'
  - More solid
  - Need to know spectrum of non-thermal electrons (GALPROP – fitted to radio and gamma-ray bkg.)
     OR just linear extrapolation of local spectrum





#### Limitations on acceleration



#### Numerical model. Stochastic acceleration





- Expected in CR-modified single or multiple shocks
- Can produce spectra harder than '-2'

Astrophysics

$$-\nabla \left[D(r,z,p)\nabla f - u(r,z)f\right] + \frac{1}{p^2}\frac{\partial}{\partial p}p^2 \left[\left(\frac{dp}{dt} - \frac{\nabla \mathbf{u}}{3}p\right)f - \kappa(r,z,p)\frac{\partial f}{\partial p}\right] = Q(p,r)\delta(z)$$
(see e.g. Berezinskii et al. 1990)

• Bloemen et al. 1993; Breitschwerdt et al. 2002: u(z) = 3vz,  $v = 10^{-15}s^{-1}$ 



# Conclusions

- In giant structures acceleration should be carefully taken into account
- Strong shocks and stochastic acceleration are most likely excluded (diffusive transport)
- 'Ballistic' models what about shocks?
- Series of weak shocks seems fine, yet correct HD required
- Galactic wind can possibly help