Testing Gravity with the Stacked Phase-space around Galaxy Clusters

Tsz Yan LAM (MPA)

Texas Symposium 2013

Collaborators: M. Takada, F. Schmidt, T. Nishimichi

1. PRL, 2012, 109, 051301
2. PRD, 2013, 88, 023012
A glimpse of the early Universe

Planck Collaboration
Initial fluctuations – Gaussian statistics

Planck Collaboration
Late-time cosmic acceleration

* Our Universe is expanding – with increasing speed
* Supernova 1a
* Baryon Acoustic Oscillation
LCDM: Lambda and CDM

Standard Concordance Cosmology:

- 5% ordinary matter
- 27% cold dark matter
- 68% dark energy

Late-time cosmic acceleration
Everything seems fine

BUT

• What are the dark components?
• Theoretical prediction of vacuum energy 10^{120} larger than the observed value
How about modifying the gravity model to something other than GR?

GR is very well-tested

- Solar system test (precession of perihelion of Mercury)
- Gravitational lensing by the Sun
- Binary pulsars
- Lunar ranging experiment
- Eötvös experiment
Current tests

Gravitational Fields
In Astrophysical Systems

Psaltis 2008

Slide taken (stolen) from Ferreira’s talk
Modifying gravity on cosmological scales, but keep everything GR otherwise

1. Mimic the cosmic expansion history WITHOUT Λ
2. Restore to GR in high density regimes
Coupling scalar field with chameleon mechanism

- Additional scalar field Φ that couples with matter content
- Scalar field having a potential $V(\Phi)$
- Effective potential for the scalar field depends on environment
Chameleon mechanism

Depends on local density

Jain & Khoury (2010)
f(R) Models

Modify the Einstein Hilbert Action by adding a f(R) piece – R is the Ricci scalar – it is a subclass of the chameleon model.

One popular choice of the f(R) form is Hu & Sawicki (2007)

\[
f(R) = -2\frac{\Lambda R}{R} + \mu^2 \approx -2\Lambda - f_{\downarrow R0} \frac{R_0^2}{2R} \quad \text{for } R \gg \mu^2
\]

\[
f_{\downarrow R0} = -2\Lambda \mu^2 / R0 \uparrow 2
\]

Current constraint (Lombriser et al. 2011): \(|f_{R0}| \leq 2 \times 10 \uparrow -4 \)
\[\mathcal{L} = \frac{1}{2} \left[\mathcal{R}/8\pi G - \nabla^a \nabla_a \phi \right] + V(\phi) - A(\phi)\mathcal{L}_{\downarrow DM} + \mathcal{L}_{\downarrow s} \]

\[A(\phi) = \exp(\gamma \sqrt{8\pi G} \phi) \]

\[V(\phi) = \Lambda / \left[1 - \exp(-\sqrt{8\pi G} \phi) \right] \alpha \]

This model is equivalent to popular f(R) model, in which the Einstein-Hilbert action contains an additional f(R) piece to the original R.
MG signatures in LSS

* Abundance/Clustering of rare objects (halos/voids)

 see Li & TYL (2012) and TYL & Li (2012) for halos
 Clampitt, Cai & Li (2013) and TYL et al. (in prep) for voids

* Gravitational lensing mass vs dynamical mass
Formation of Structure in 30s

$z = 20.0$
Late-time Universe
Part 1: Abundance of Rare Objects
• Abundance & clustering of massive clusters are sensitive probes for cosmology
• Detections: optical; x-ray; Sunyaev-Zeldovich; gravitational lensing
Halo Mass Function: Number density of halos in various mass bins
* Halos form at regions where the initial density contrast is sufficiently high.
* Count regions where the density contrast exceeds the critical value in the initial condition.
* Start from large scale, gradually decrease the smoothing scale until the density contrast exceeds the critical value.

Definition: $M/\rho V = \Delta = 1 + \delta$
Both smoothing scales exceed δ/c

Only count the biggest scale to avoid double-counting
Increasing mass

Only FIRST crossing counts!
Essential Ingredients:

1. Barriers (Structure formation threshold in linear density contrast)
2. First crossing probability across barriers

Halos; Mass in Eulerian volume; Voids

\[f(S) \text{d}S \approx \frac{1}{n(M) \text{d}M} \]

\[n(M) = \text{number density of halos with mass } (M+dM) \]

\[f(S) = \text{first crossing probability of the critical barrier at } S \]

Total mass conservation
Recent Developments

- Analytical solution is known for Markovian (uncorrelated) random walk (Chandrasekhar 1943; Zhang & Hui 2006; TYL & Sheth 2009)
- For non-Markovian walk approximations are available (Peacock & Heavens 1990; Maggiore & Riotto 2009a; Paranjape, TYL & Sheth 2011; Musso & Sheth 2013a,b)
- Stochastic barriers (Maggiore & Riotto 2009b)
Extension to MG model

* The presence of the fifth force modifies structure formation.
* Chameleon mechanism screens the fifth force in high density environment.
* The formation of structures differ depending on the environment density.
Collapse Threshold in MG model
Methodology

• For a given δ_{env}, we have a new barrier $\delta_c(\delta_{\text{env}})$
• Get the first crossing probability for this $\delta_c(\delta_{\text{env}})$: $f(s|\delta_c(\delta_{\text{env}}))$
• Marginalize over δ_{env}

Question: What is the probability of having δ_{env}?
Spherical Collapse Approximation

Relate the initial density contrast to the evolved density

\[\frac{M}{\rho V} = 1 + \delta_{NL} = (1 - \frac{\delta_{ll}}{\delta_{lc}})^{\uparrow - \delta_{lc}} \]

- Total mass within a volume V
- Initial density contrast
- Spherical collapse parameter (cosmology dependent, \(\approx 1.676 \))
- Density contrast (late-time)

(Bernadeau 1994; Sheth 1998)
Eulerian Barrier

The above approximation can be used to obtain a relation between M and δ_l

$$\frac{\delta l}{\delta c} = 1 - \frac{1}{M/\rho V} - \frac{1}{\delta c}$$

- For very large M (or very small V), $\delta l \rightarrow \delta c$
- No lower bound on δl
- Upper bound of δl is δc
Eulerian barriers and excursion set

(Sheth 1998; TYL & Sheth 2008a,b)

- Nested barriers: small volume at top
- Start at δ_{lc} when $s = 0$
- Again the first crossing counts!
First Crossing Probability
Results

\[\text{LCDM } P(k) \]

\[\zeta = 5 \, \text{Mpc/h} \]

\[\xi = 8 \, \text{Mpc/h} \]

\[\mu = 0.5, \alpha = 10^{-8} \]

\[P(k) \times k^\alpha, \, n_z = -1.5 \]

\[\Delta(\nu) / f_g(\nu) \]

\[\ln(10) \nu f(\nu) \]

\[\mu = 0.5, \alpha = 10^{-8} \]

\[P(k) \times k^\alpha, \, n_z = -1.5 \]

\[\Delta(\nu) / f_g(\nu) \]

\[\ln(10) \nu f(\nu) \]
Dependence on environments

\[\frac{\Delta f(v)}{f(v, \xi = 5 \text{ Mpc/h})} \]

- $\mu = 0.5$, $\alpha = 10^{-6}$
- $\xi = 8 \text{ Mpc/h}$
- $\xi = 10 \text{ Mpc/h}$

\[\lg(\nu = \frac{\delta_c^2}{s}) \]
Short Summary

• Abundance of massive clusters shows signature of MG
• Enhancement in intermediate mass clusters (fifth force enhances growth of structure)
• Detriment in low mass end (mass are distributed to intermediate mass)
• No change in high mass end (effective screening mechanism)
• Choice of environment (secondary compared to the MG effect) – using correlated random walks relieve this dependence (see Lam & Li 2012 for details).
Chameleon effect is screening the fifth force in high density region...

How about looking at underdense regions?
Definition of Voids

- Voids – underdense regions, occupying most volumes of the universe
- Density \sim 20% of the background density
- $\delta_l / \delta_c = 1 - (M/\rho V)^{\uparrow} - 1/\delta_c$ tells us $\delta_l \approx -2.76$
- Reminder: δ_l is the linearly extrapolated density contrast, not the physical one!
Void-in-cloud

Only count walks that NEVER crossed $\delta \mathcal{C}$ at bigger smoothing scales
1. Just the first crossing of the δv barrier?
2. How about random walks that has up-crossed δc at s_{1}, then down-crossed δv at $s_{2} (> s_{1})$?
3. An overdense regions (for s_{1}) enclosing an underdense regions (for s_{2}).
4. Comoving size corresponding to s_{1} is shrinking, crush the ‘expanding’ regions for s_{2}.
5. It is called Void-in-Cloud.

Lagrangian assignment: First crossing across δv, but only those never crossed δc. (Sheth & van de Weygart 2004)
Can an underdense region really expand its comoving volume 5 times?
How about those Eulerian barriers?
Surrounding environment may restrict the growth (expansion) of the underdense region: eulerian void assignment!
Eulerian Void Assignment (Paranjape, TYL & Sheth 2012)

Look for the biggest Eulerian volume that has a density 20% of the background

- NOT all Lagrangian-assigned voids are Eulerian voids (not including voids of vanishing sizes)
- If they are, the corresponding Eulerian voids are always smaller.
Back to MG... void formation threshold is modified

\[\alpha = 10^{-6} \]

\[2\gamma^2 = 1/3 \]

\[\delta_{env} = 1.6 \]

\[\delta_{env} = 0.8 \]

\[\delta_{env} = 0.0 \]

\[\delta_{env} = -0.8 \]

\[\delta_{env} = -1.6 \]

\[\delta_{env} = -2.4 \]
We also need to know how the Eulerian barriers are modified in MG models.

\[\alpha = 10^{-6}, \quad 2\gamma^2 = \frac{1}{3} \]

\[R_{\text{eul}} = 5, 10, 15 \]

\[\delta_{\text{env}} = -1.20, 0.00, -2.40 \]

\[S \]

\[\delta \]
Multiple scales involved:

- Various eulerian scales where the density condition is checked
- Their associated environments (5 times the eulerian scales – see Clampitt, Cai & Li 2013)
- Environment for halo formation (Use 5 Mpc/h – same scale as in Lam & Li 2012)
- Recall that for barriers of all environments are GR
1. First draw the (GR) halo environment barrier;
2. Make sure random walk never cross the modified δ_{c} barrier;
3. For each step of the random walks (s, δ_{l}), make an initial guess of the Eulerian size R_{E};
4. From this initial guess, $R_{\text{env}} = 5 R_{\text{E}}$;
5. Draw GR barrier for R_{env};
6. First crossing of R_{env} gives δ_{env};
7. Consistence check for $(s, \delta_{\text{l}} | \delta_{\text{env}})$;
8. Back to step 4 until converges.

TYL et al. in prep
Eulerian-Void Assignment in MG models
• Void abundance is also enhanced in MG models
• No chameleon effect: the number for large voids keeping increasing
• Note: MG is NOT the only cosmological model that would enhance both the halo/void abundance
• Example: higher σ_8, primordial non-Gaussianity (τ_{nl} or g_{nl})
• The signature of the screening mechanism (effective in high mass end but negligible in underdense regions) would single out MG models.
Part 2: Gravitational lensing masses vs dynamical masses
Model Independent test of gravity

• In GR, lensing mass = dynamical mass – the two scalar perturbations are the same.
• In MG models, it is generally not the same.
• Need imaging + spectroscopic surveys (SDSS; HSC + PFS)
• Focus on massive clusters: dominate the environment makes modeling easier.

Unique signature of MG models
Gravitational Lensing
Observables: r_p and v_{los}
\ln p_{2D}(r_p, v_{\text{los}})
Stacking 2000 clusters

TYL et al. 2013
Significant modifications in (line-of-sight) velocity dispersion
Same model, but showing change in the mass function

Schmidt et al. 2009
Halo Model Approach

Ingredients:
1. Halo Mass Function
2. Halo Clustering
3. Virial velocity
4. Halo-halo pairwise velocity
Model Prediction matches N-body simulation measurements

TYL et al. 2013

Halo-halo pairs, GR
Models match well with measurements from $f(R)$ simulation
The same model also predicts the velocity dispersion of the DGP model.
Modification in velocity dispersion comes from different components
But life is not that easy…

1. \(v_{\text{los}} = v_{\text{relative}} \cdot z + \Delta v_{\text{hubble}} \)

2. Cannot make sharp cut in line-of-sight separation: the unit in the line-of-sight direction is differential redshift.

 a) Measure velocity dispersion within a predefined \(v_{\text{cut}} \).
 b) Hubble flow contributes a constant background: subtract that constant and evaluate the velocity dispersion.
Hubble Flow contamination

Halo-halo pairs, GR
Information in the full phase-space distribution
Summary

- Gravitational lensing vs dynamical mass as a model Independent test for gravity models is promising
- Handling of systematics still requires improvements

Work in progress:

1. Removal of the Hubble flow contamination (deconvolution method);
2. Applying models to SDSS data
Happy Winter
Conclusion

- LSS provides various probes to MG models
- Fifth force enhances growth of structure
- Screening mechanisms screen the fifth force and gravity restores to GR
- Model-independent test using gravitational lensing mass against dynamical mass is promising, but more work are still needed.