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MOTIVATION AND OBJECTIVES 

¢ Currently need “dark energy” to explain 
cosmic acceleration.   

¢ Extensions to GR & modifications to 
gravity have been introduced. 

¢ Need to distinguish between these two 
scenarios 
�  Tests must be robust. 
�  Must explore effects of different phenomena on 

the conclusions of tests. 



WAYS TO TEST GENERAL RELATIVITY 

¢ Looking for inconsistencies in between expansion 
history and growth of structure 

¢  “Trigger parameters”, γ, the growth index.  The 
logarithmic growth rate                      can be 
approximated by: 

 For different gravity models γ has a unique 
value.  

¢ Parameterizing deviations from known growth 
equations. ar
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The growth rate of matter perturbations can be used to distinguish between different gravity
theories and to distinguish between dark energy and modified gravity at cosmological scales as an
explanation to the observed cosmic acceleration. We suggest here parameterizations of the growth
index as functions of the redshift. The first one is given by γ(a) = γ̃(a) 1

1+(attc /a) +γearly
1

1+(a/attc )

that interpolates between a low/intermediate redshift parameterization γ̃(a) = γlate(a) = γ0 + (1−

a)γa and a high redshift γearly constant value. For example, our interpolated form γ(a) can be used
when including the CMB to the rest of the data while the form γlate(a) can be used otherwise. It is
found that the parameterizations proposed achieve a fit that is better than 0.004% for the growth
rate in a ΛCDM model, better than 0.014% for Quintessence-Cold-Dark-Matter (QCDM) models,
and better than 0.04% for the flat Dvali-Gabadadze-Porrati (DGP) model (with Ω0

m = 0.27) for the
entire redshift range up to zCMB . We find that the growth index parameters (γ0, γa) take distinctive
values for dark energy models and modified gravity models, e.g. (0.5655,−0.02718) for the ΛCDM
model and (0.6418, 0.06261) for the flat DGP model. This provides a means for future observational
data to distinguish between the models.

PACS numbers: 95.36.+x;98.80.Es;04.50.-h

I. INTRODUCTION

Cosmic acceleration can be caused by a dark energy component in the universe or a modification to the Einstein
field equations of General Relativity at cosmological scales. The growth rate of matter perturbations has been the
subject of much recent interest in the literature as a way to distinguish between one possibility or the other, see for
example [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] for a partial list. Indeed, distinct gravity theories may have degenerate
expansion histories but can be distinguished by their growth rate functions.

As usual, the large scale matter density perturbation δ = δρm/ρm satisfies, to linear order, the differential equation

δ̈ + 2H δ̇ − 4πGeffρmδ = 0, (1)

where H is the Hubble parameter and the effect of the underlying gravity theory is introduced via the expression for
Geff . The distinct behavior of δ for different gravity models can be seen in some of the aformentioned references such
as for example [9, 10]. Equation (1) can be written in terms of the logarithmic growth rate f = d ln δ/d lna as

f ′ + f2 +

(

Ḣ

H2
+ 2

)

f =
3

2

Geff

G
Ωm, (2)

where primes denote d/d ln a. Throughout this work we will use the numerically integrated solution to this equation
normalized at a = 0 (z = ∞). Next, the growth function f is usually approximated using the ansatz [14, 15, 16, 17]

f = Ωγ
m (3)

where γ is the growth index parameter. Reference [14] made an approximation that applies to matter dominated

models and proposed f(z = 0) = Ω0.6
m0 and was followed by a more accurate approximation f(z = 0) = Ω4/7

m0 in [15, 16].
Reference [17] considered dark energy models with slowly varying equation of state, w, and found an expression for γ
as function of Ωm and w. This has been discussed further in more recent references, see for example [3, 19], and also
expanded to models with curvature in [20] and [21].

The approaches of expanding the growth index around some asymptotic value or early, matter dominated times
with Ωm ≈ 1, or those considering specific redshift ranges to approximate γ do not cover other redshift ranges of
interest where observational data is available and can constrain the growth parameters or break degeneracies between
them and other cosmological parameters.

∗ Electronic address: mishak@utdallas.edu
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MODIFIED GROWTH EQUATIONS  
Flat Perturbed FLRW Metric. 
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implement the evolution in time and scale of the modified gravity parameters using a functional form method and a
binning method. We also propose and implement a new hybrid method that combines both. In the hybrid method,
the evolution in time is represented in two redshift bins while the scale evolution follows a monotonic functional form.
This provides a smooth evolution in scale combined with a binned redshift (time) dependence that was shown to
be more robust than time functional forms as we discuss in the next section, see also [53, 56, 58]. We also describe
the numerical framework that we introduce here as the package: Integrated Software in Testing General Relativity,
ISiTGR (pronounced Is it GR and available publicly at http://www.utdallas.edu/~jdossett/isitgr/). ISiTGR is
an integrated set of modified modules for the publicly available packages CosmoMC [59] and CAMB [60]. It combines
all the modifications to those packages and a modified version to the of the Integrated Sachs-Wolfe (ISW)-galaxy
cross correlations module by Ho et al. [61, 62] to test GR. We also include our weak-lensing likelihood module for
the recently refined Hubble Space Telescope (HST) Cosmic Evolution Survey (COSMOS) weak-lensing tomography
analysis in [63] which has also been modified to test GR, and a new baryon acoustic oscillation (BAO) likelihood
module for the recently released WiggleZ Dark Energy Survey BAO measurement data [64].

II. PARAMETRIZING DEVIATIONS OF THE GROWTH EQUATIONS FROM GENERAL
RELATIVITY

A. Growth Equations in General Relativity

In the conformal Newtonian gauge the perturbed Friedmann-Lemaitre-Robertson-Walker (FLRW) metric is written
as

ds2 = a(τ)2[−(1 + 2ψ)dτ2 + (1− 2φ)dxidxi], (1)

where a(τ) is the scale factor normalized to 1 today, the xi’s are the comoving coordinates, and τ is conformal time.
φ and ψ are scalar potentials describing the scalar mode of the metric perturbations.
Using the first-order perturbed Einstein equations, while working in Fourier k space, we can get two very useful

equations that describe the evolution of the scalar potentials. The combination of the time-time and time-space
equations gives the Poisson equation describing the potential φ. Then, to relate the two potentials to one another we
take the traceless, space-space component of these equations. Explicitly, these equations are

k2φ = −4πGa2
∑

i

ρi∆i (2)

k2(ψ − φ) = −12πGa2
∑

i

ρi(1 + wi)σi, (3)

where ρi and σi are the density and the shear stress, respectively, for matter species, i. ∆i is the gauge-invariant,
rest-frame overdensity for matter species, i, the evolution of which describes the growth of inhomogeneities. It is
defined by

∆i = δi + 3H
qi
k
, (4)

where H = ȧ/a is the Hubble factor in conformal time, and for species i, δi = δρi/ρ̄ is the fractional overdensity and qi
is the heat flux and is related to the divergence of the peculiar velocity, θi, by θi =

k qi
1+wi

. Enforcing the conservation
of energy momentum on the perturbed matter fluid, these quantities for uncoupled fluid species or the mass-averaged
quantities for all the fluids evolve as described in [65]:

δ̇ = −kq + 3(1 + w)φ̇ + 3H(w −
δP

δρ
)δ (5)

q̇

k
= −H(1− 3w)

q

k
+

δP

δρ
δ + (1 + w) (ψ − σ) . (6)

Above, w = p/ρ is the equation of state. Combining these two equations, we can express the evolution of ∆ by

∆̇ = 3(1 + w)
(

φ̇+Hψ
)

+ 3Hw∆−
[

k2 + 3
(

H2 − Ḣ
)] q

k
− 3H(1 + w)σ. (7)

Equations (2),(3),(5), and (6) are coupled to one another; combining them, along with the evolution equations for
a(τ), we can describe the growth history of structures in the Universe.

Modified Growth Equations 
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For our modified growth equations we will use the formalism introduced by [42]. These equations read

k2φ = −4πGa2
∑

i

ρi∆i Q (4)

k2(ψ −Rφ) = −8πGa2
∑

i

ρiwiΠi Q, (5)

where Q and R are the modified growth parameters (MG parameters). We write separately equations (2)-(3) and
(4)-(5) in order to avoid any ambiguity when we refer extensively to each set in the following sections. A modification
to the Poisson equation is quantified by the parameter Q, while the gravitational slip (a term coined by [34]) is
quantified by the parameter R (at late times, assuming anisotropic stress is negligible, ψ = Rφ).

B. Dark energy perturbations

1. Dark energy models with density perturbations

Before discussing our results, it is necessary to discuss the standard evolution equations for dark energy perturba-
tions. As in our description of the modified growth equations we will be working in the conformal Newtonian gauge.
Enforcing conservation of energy momentum on a perturbed fluid gives the following two equations [58]:

δ̇ = −(1 + w)(θ − 3φ̇) + 3H(w − δP

δρ
)δ (6)

θ̇ = −H(1− 3w)θ − ẇ

1 + w
θ +

δP/δρ

1 + w
k2δ + k2ψ, (7)

where δ is the fractional overdensity, δρ/ρ, θ is the divergence of the peculiar velocity, and P is the pressure.
To handle perturbations of dark energy, it is useful to define an effective sound speed of dark energy perturbations,

cs, such that [60–62]:

δP

δρ
δ ≡ δP

ρ
= c2sδ + 3H(1 + w)(c2s − c2a)

θ

k2
, (8)

where ca is the adiabatic sound speed, given by

c2a =
Ṗ

ρ̇
= w − ẇ

3H(1 + w)
. (9)

Now subbing Eq. (8) into Eqs. (6) and (7) we have for the evolution equations for dark energy perturbations with
an effective sound speed, cs [62]:

δ̇ = −(1 + w)
{ [

k2 + 9H2(c2s − c2a)
] θ

k2
− 3φ̇

}
+ 3H(w − c2s)δ (10)

θ̇ = (3c2s − 1)Hθ + k2
c2sδ

1 + w
+ k2ψ. (11)

2. Dark energy models with density and anisotropic stress perturbations

Above we have considered only dark energy models where the dark energy was modeled as a perfect fluid. In the
most general case, one should also consider dark energy models with an anisotropic stress, Π. Such models have been
discussed previously in, for example, [60, 63, 64]. For brevity, here we will quickly review the relevant equations for
these models, however a more in depth discussion of these models is available in the aforementioned references.
First, we should define the evolution equation for the anisotropic stress perturbation. This was first given in [60].

In the conformal Newtonian gauge this equation is written:

Π̇+ 3HΠ = 4
c2vis
w
θ, (12)



EFFECTS OF DARK ENERGY 
PERTURBATIONS ON THE TESTS 
¢ Tests must be robust. 

�  Can a more complicated dark energy model mimic a 
modified gravity model? 

�  Will we be able to say for sure that a detected 
deviation in the MG parameter space is due to a 
departure from GR. 
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where Q and R are the modified growth parameters (MG parameters).

7.2 Dark energy perturbations

Before discussing our results it is necessary to to discuss the standard evolution equations for

dark energy perturbations. As in our description of the modified growth equations we will

be working in the conformal Newtonian gauge. Enforcing conservation of energy momentum

on a perturbed fluid gives the following two equations [102]:

δ̇ = −(1 + w)(θ − 3φ̇) + 3H(w − δP

δρ
)δ (7.7)

θ̇ = −H(1− 3w)θ +
δP/δρ

1 + w
k2δ + k2 (ψ − σ) , (7.8)

where δ is the fractional overdensity, δρ/ρ, θ is the peculiar velocity, and P is the pressure.

To handle perturbations of dark energy, it is useful to define an effective sound speed of

dark energy perturbations, cs, such that [10, 32, 41]:

δP

δρ
δ ≡ δP

ρ
= c2sδ + 3H(1 + w)(c2s − c2a)

θ

k2
, (7.9)

where ca is the adiabatic sound speed, given by

c2a =
Ṗ

ρ̇
= w − ẇ

3H(1 + w)
. (7.10)

Now subbing (7.9) into Eqns. (7.7) and (7.8) we have for the evolution equations for

dark energy perturbations with an effect sound speed cs:

δ̇ = −(1 + w)
{ [

k2 + 9H2(c2s − c2a)
] θ
k2

− 3φ̇
}
+ 3H(w − c2s)δ (7.11)

θ̇ = (3c2s − 1)Hθ + k2 c2sδ

1 + w
+ k2 (ψ − σ) . (7.12)
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where c2vis is the viscosity parameter. As discussed in [63], in order to produce stable solutions, c2vis must have the
same sign as (1 + w).
Next we must consider the effect that the anisotropic stress perturbations in the dark energy will have on the

evolution of the other dark energy perturbation variables. In [60] it is shown that δ is only indirectly affected, while
the evolution of θ is directly modified and given by

θ̇ = (3c2s − 1)Hθ + k2
c2sδ

1 + w
+ k2

(
ψ − 2

3

w

1 + w
Π

)
. (13)

III. RELATIONS BETWEEN DARK ENERGY PERTURBATIONS AND THE MG PARAMETERS

We will now explore how the effects dark energy perturbations can mimic any possible departures of MG parameters
introduced in Eqs. (4) and (5) from their value of unity in ΛCDM. While the relationship between the dark energy
perturbations and the growth index, γ, is hard to explore analytically, with the MG parameters we can actually derive
analytic expressions in terms of already defined variables.
Before deriving these expressions, let us first discuss how tests with these parameters are performed. When per-

forming tests using MG parameters the usual approach is to make the assumption that we are in the presence of
a ΛCDM model and look for deviations from that model using MG parameters such as those in Eqs. (4) and (5).
Given that we are assuming a ΛCDM background, when we look at these equations, none of the quantities on the
right-hand side (RHS) of Eqs. (4) and (5) are dark energy quantities since dark energy does not have perturbations
or anisotropic stress perturbations in ΛCDM.
Now to see how dark energy perturbations affect the MG parameters, let us now consider a case where the true

underlying background model does allow for dark energy to have perturbations and shear. In this case, the underlying
model has potentials governed by Eqs. (2) and (3), where the quantities on the RHS do include dark energy quantities.
We will denote these dark energy quantities with a subscript DE below. We can calculate how the effects of these dark
energy perturbations can mimic the presence of the parameters Q and R by noticing that when performing these tests
the metric potentials from the modified growth equations must match the metric potentials of the true underlying
model.
Since the left-hand sides of Eqs. (2) and (4) are the same, we can simply set the right-hand sides of these equations

equal to one another and solve for Q. Separating out the dark energy perturbations in Eq. (2), we have (as previously
obtained in [65]):

−Q 4πGa2
∑

i ̸=DE

ρi∆i = −4πGa2
∑

i ̸=DE

ρi∆i − 4πGa2ρDE∆DE (14)

⇒ Q = 1 +
ρDE∆DE∑
i ̸=DE

ρi∆i
. (15)

Obtaining an expression for R is a little more cumbersome as we must first evaluate an expressions for ψ. By
combining Eq. (2) with Eq. (3) and Eq. (4) with Eq. (5) we obtain:

k2ψ = −
∑

i ̸=DE

ρ̃i
[
wiΠi +

∆i

2

]
− ρ̃DE

[
wDEΠDE +

∆DE

2

]
, (16)

k2ψ = −Q
∑

i ̸=DE

ρ̃i
[
wiΠi +R

∆i

2

]
, (17)

where ρ̃α = 8πGa2ρα. Now equating the RHS of these equations, subbing in for Q using Eq. (15), and solving for R
gives

R = 1 + 2

ρDEwDEΠDE − ρ
DE

∆DE∑
i ̸=DE

ρi∆i

∑
i ̸=DE

ρiwiΠi

∑
i̸=DE

ρi∆i + ρDE∆DE
. (18)

This equation shows that, at late times with the assumption that ordinary matter has negligible anisotropic stress,
the only way we could see an effect on R is if dark energy has some type of anisotropic stress.
Taking Eqs. (15) and (18) together, we can see that neglecting a dark energy model with perturbations and

anisotropic stress could, in fact, influence our constraints on the MG parameters Q and R. We will explore the
magnitude of these effects.
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2. Dark energy models with density and anisotropic stress perturbations

Above we have considered only dark energy models where the dark energy was modeled as a perfect fluid. In the
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dark energy perturbations in Eq. (7.3) we have:

−Q 4πGa2
∑

i ̸=DE

ρi∆i = −4πGa2
∑

i ̸=DE

ρi∆i − 4πGa2ρDE∆DE (7.17)

⇒ Q = 1 +
ρDE∆DE∑
i ̸=DE

ρi∆i
(7.18)

Obtaining an expression for R is a little more cumbersome. We must first evaluate an

expressions for ψ by combining Eqn. (7.3) with Eqn. (7.4) and Eqn. (7.5) with Eqn. (7.6)

these give:

k2ψ = −
∑

i ̸=DE

ρ̃i
[
wiΠi +

∆i

2

]
− ρ̃DE

[
wDEΠDE +

∆DE

2

]
, (7.19)

k2ψ = −Q
∑

i ̸=DE

ρ̃i
[
wiΠi +R

∆i

2

]
, (7.20)

where ρ̃α = 8πGa2ρα. Now equating the RHS of these equations, subbing in for Q using

Eqn.(7.18), and solving for R gives

R =

3
[
ρDEwDEΠDE − ρDE∆DE∑

i ̸=DE
ρi∆i

∑
i ̸=DE

ρiwiΠi

]

∑
i ̸=DE

ρi∆i + ρDE∆DE
+ 1. (7.21)

This equation shows that at late times, assuming ordinary matter has negligible anisotropic

stress, the only way we could see an effect on R is if dark energy has some type of anisotropic

stress.

Taking Eqns. (7.18) and (7.21) together, we can see that indeed neglecting a dark energy

model that has perturbations and anisotropic stress could in fact influence our constraints

on the MG parameters Q and R. Next we will explore the magnitude of these effects.

Effect of dark energy density perturbations on the MG parameter Q

Exploring how dark energy perturbations affect Q is quite simple. To do this we simply

allow our modified version of CAMB to evolve dark energy perturbations for a range of values

We combining the modified and unmodified growth equations 
125

this parameterization and how these model parameters compare to others please refer to the

original paper [141].

In the plot where Q− 1 is a function of a, we include a plot of Q− 1 for a DGP model

with an expansion history matching that of ΛCDM with Ωm = 0.251. Q for a DGP model

is given by

QDGP =
4 + 2Ωm(a)2

3 + 3Ωm(a)2
. (7.24)

Figure 7.3 shows that indeed for low k values Q can deviate from the GR value of 1 if

dark energy is allowed to have perturbations. These deviations are however nowhere close

to the magnitude of deviations that appear for the the f(R) model shown even for the most

extreme values of w. On top of that the deviations from the f(R) models appear for a

different range of k (f(R) shows deviations for k > .004 while the dark energy models show

deviations for k < 0.004). The plot for Q − 1 as a function of a shows deviations are also

not of the magnitude of those exhibited by the given DGP model where Q is given by Eq.

(7.24). Plugging in Ωm = 0.251 to this formula gives a value of QDGP − 1 = 0.294. Again

this is well outside the values shown in the plots even for the most extreme values of the

dark energy equation of state.

Effect of dark energy peruturbations on the MG parameter R

The effect of dark energy perturbations on the MG parameter R are a bit more complicated

to explore. As stated briefly earlier, looking at Eq. (7.21) we can see that in order for a

dark energy model to affect constraints on the MG parameter R at late times, that model

must have anisotropic stress perturbations, ΠDE . Some dark energy models with anisotropic

stress perturbations have been discussed in [79, 109]. Here though we study the magnitude

of ΠDE needed to give the MG parameter R an evolution that behaves as:

R(k, a) =
1

2

[
R0 − 1 + (1−R0) tanh 150(k − 0.01)

]
a1.8 + 1 (7.25)

For DGP Models For f(R) Models 
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FIG. 3: We plot Q−1 as evaluated from Eq. (15) for various dark energy models where we allow for dark energy perturbations.
The legend lists the various models used and is ordered according to their values at large scales today. LEFT: Here we plot Q−1
as a function of scale factor a for the scale corresponding to 40 times that of the horizon as explained in subsection (IV.A.2).
We also include a plot of Q − 1 for a DGP model with Ωm = 0.251 and an expansion history identical to that of ΛCDM, as
given by Eq. (24). This model deviates much more significantly than do any of the dark energy models with perturbations.
RIGHT: We plot Q− 1 as a function of wave-number k today. Also included is a plot of Q− 1 for a f(R) model as described
by Eq (23). Not only is the deviation that manifests for f(R) more significant than the deviations for dark energy models with
perturbations, but f(R) also shows deviations for a different range of k values.

This is in agreement with the relation found by [3]. In that work it was assumed that dark energy did not have
perturbations and w only affected the growth via its contribution to the Hubble expansion terms in the growth
equations. Here we have allowed dark energy perturbations and, for the scales at which we have evaluated f , their
effect on the growth index is minimal. Thus as a first main finding, the growth index, γ, remains a valid way
to distinguish between different models of gravity even when dark energy is allowed to have density and velocity
perturbations. None of the values obtained for γ are near those seen for modified gravity models such as the Dvali-
Gabadadze-Porrati (DGP) model [75] or the f(R) models (e.g. γDGP = 0.6875 [13] and γf(R) = 0.42 [19, 23]).
Another thing worth noticing is the consistent sign of the best fit values for the parameter γb. This is consistent

with the conclusions made in [15, 22, 30], where it was noted that the sign of slope parameter of the growth index (in
this case γb) could be used to discriminate between different models of gravity. For models where GR is the underlying
gravity theory [30] found a positive γb. We continue to see this trend.

2. Impact on the MG parameter Q

In order to explore how dark energy perturbations affect Q we allow our modified version of CAMB to evolve dark
energy perturbations for a range of values for the dark energy equation of state, w. At each time step we then output
k, a, and Q, where Q is evaluated at each time step using Eq. (15). In Fig. 3 we plot Q − 1 as a function of k
today and as a function of a for at 40 times the horizon scale. We chose to plot the values of Q − 1 as a funciton
of a at this scale because we found that larger scale modes did not significantly contribute (above a percent level) to
the amplitude of even the lowest multipoles of the CMB power spectra. In this way we would never be able detect
variations in the MG parameters at scales larger than this.
For comparison, in the plot of Q − 1 as a function of k we also plot the Q − 1 for a f(R) model using the of the

parameterization of [38], which is an improved version of what was introduced by [26]. In this parameterization, Q is
written as

Qf(R) =
1

1− 1.4× 10−8|λ1|2a3
1 + 2

3λ
2
1k

2a4

1 + λ21k
2a4

, (23)

where λ1 is just the Compton wavelength today. We can write λ21 = B0c2/(2H2
0 ) and use B0 to quantify the value of

λ1 in units of the Hubble radius. Thus the effect of f(R) models on the growth is described by only 1 parameter, B0.
Here we plot an f(R) model with B0 = 10−3 which is two orders of magnitude smaller than the upper limits placed
on this parameter by [38].
When plotting Q − 1 is a function of a, we include a plot of Q − 1 for a DGP model with an expansion history
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FIG. 3: We plot Q−1 as evaluated from Eq. (15) for various dark energy models where we allow for dark energy perturbations.
The legend lists the various models used and is ordered according to their values at large scales today. LEFT: Here we plot Q−1
as a function of scale factor a for the scale corresponding to 40 times that of the horizon as explained in subsection (IV.A.2).
We also include a plot of Q − 1 for a DGP model with Ωm = 0.251 and an expansion history identical to that of ΛCDM, as
given by Eq. (24). This model deviates much more significantly than do any of the dark energy models with perturbations.
RIGHT: We plot Q− 1 as a function of wave-number k today. Also included is a plot of Q− 1 for a f(R) model as described
by Eq (23). Not only is the deviation that manifests for f(R) more significant than the deviations for dark energy models with
perturbations, but f(R) also shows deviations for a different range of k values.

This is in agreement with the relation found by [3]. In that work it was assumed that dark energy did not have
perturbations and w only affected the growth via its contribution to the Hubble expansion terms in the growth
equations. Here we have allowed dark energy perturbations and, for the scales at which we have evaluated f , their
effect on the growth index is minimal. Thus as a first main finding, the growth index, γ, remains a valid way
to distinguish between different models of gravity even when dark energy is allowed to have density and velocity
perturbations. None of the values obtained for γ are near those seen for modified gravity models such as the Dvali-
Gabadadze-Porrati (DGP) model [75] or the f(R) models (e.g. γDGP = 0.6875 [13] and γf(R) = 0.42 [19, 23]).
Another thing worth noticing is the consistent sign of the best fit values for the parameter γb. This is consistent

with the conclusions made in [15, 22, 30], where it was noted that the sign of slope parameter of the growth index (in
this case γb) could be used to discriminate between different models of gravity. For models where GR is the underlying
gravity theory [30] found a positive γb. We continue to see this trend.

2. Impact on the MG parameter Q

In order to explore how dark energy perturbations affect Q we allow our modified version of CAMB to evolve dark
energy perturbations for a range of values for the dark energy equation of state, w. At each time step we then output
k, a, and Q, where Q is evaluated at each time step using Eq. (15). In Fig. 3 we plot Q − 1 as a function of k
today and as a function of a for at 40 times the horizon scale. We chose to plot the values of Q − 1 as a funciton
of a at this scale because we found that larger scale modes did not significantly contribute (above a percent level) to
the amplitude of even the lowest multipoles of the CMB power spectra. In this way we would never be able detect
variations in the MG parameters at scales larger than this.
For comparison, in the plot of Q − 1 as a function of k we also plot the Q − 1 for a f(R) model using the of the

parameterization of [38], which is an improved version of what was introduced by [26]. In this parameterization, Q is
written as

Qf(R) =
1

1− 1.4× 10−8|λ1|2a3
1 + 2

3λ
2
1k

2a4

1 + λ21k
2a4

, (23)

where λ1 is just the Compton wavelength today. We can write λ21 = B0c2/(2H2
0 ) and use B0 to quantify the value of

λ1 in units of the Hubble radius. Thus the effect of f(R) models on the growth is described by only 1 parameter, B0.
Here we plot an f(R) model with B0 = 10−3 which is two orders of magnitude smaller than the upper limits placed
on this parameter by [38].
When plotting Q − 1 is a function of a, we include a plot of Q − 1 for a DGP model with an expansion history
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FIG. 3: We plot Q−1 as evaluated from Eq. (15) for various dark energy models where we allow for dark energy perturbations.
The legend lists the various models used and is ordered according to their values at large scales today. LEFT: Here we plot Q−1
as a function of scale factor a for the scale corresponding to 40 times that of the horizon as explained in subsection (IV.A.2).
We also include a plot of Q − 1 for a DGP model with Ωm = 0.251 and an expansion history identical to that of ΛCDM, as
given by Eq. (24). This model deviates much more significantly than do any of the dark energy models with perturbations.
RIGHT: We plot Q− 1 as a function of wave-number k today. Also included is a plot of Q− 1 for a f(R) model as described
by Eq (23). Not only is the deviation that manifests for f(R) more significant than the deviations for dark energy models with
perturbations, but f(R) also shows deviations for a different range of k values.

This is in agreement with the relation found by [3]. In that work it was assumed that dark energy did not have
perturbations and w only affected the growth via its contribution to the Hubble expansion terms in the growth
equations. Here we have allowed dark energy perturbations and, for the scales at which we have evaluated f , their
effect on the growth index is minimal. Thus as a first main finding, the growth index, γ, remains a valid way
to distinguish between different models of gravity even when dark energy is allowed to have density and velocity
perturbations. None of the values obtained for γ are near those seen for modified gravity models such as the Dvali-
Gabadadze-Porrati (DGP) model [75] or the f(R) models (e.g. γDGP = 0.6875 [13] and γf(R) = 0.42 [19, 23]).
Another thing worth noticing is the consistent sign of the best fit values for the parameter γb. This is consistent

with the conclusions made in [15, 22, 30], where it was noted that the sign of slope parameter of the growth index (in
this case γb) could be used to discriminate between different models of gravity. For models where GR is the underlying
gravity theory [30] found a positive γb. We continue to see this trend.

2. Impact on the MG parameter Q

In order to explore how dark energy perturbations affect Q we allow our modified version of CAMB to evolve dark
energy perturbations for a range of values for the dark energy equation of state, w. At each time step we then output
k, a, and Q, where Q is evaluated at each time step using Eq. (15). In Fig. 3 we plot Q − 1 as a function of k
today and as a function of a for at 40 times the horizon scale. We chose to plot the values of Q − 1 as a funciton
of a at this scale because we found that larger scale modes did not significantly contribute (above a percent level) to
the amplitude of even the lowest multipoles of the CMB power spectra. In this way we would never be able detect
variations in the MG parameters at scales larger than this.
For comparison, in the plot of Q − 1 as a function of k we also plot the Q − 1 for a f(R) model using the of the

parameterization of [38], which is an improved version of what was introduced by [26]. In this parameterization, Q is
written as

Qf(R) =
1

1− 1.4× 10−8|λ1|2a3
1 + 2

3λ
2
1k

2a4

1 + λ21k
2a4

, (23)

where λ1 is just the Compton wavelength today. We can write λ21 = B0c2/(2H2
0 ) and use B0 to quantify the value of

λ1 in units of the Hubble radius. Thus the effect of f(R) models on the growth is described by only 1 parameter, B0.
Here we plot an f(R) model with B0 = 10−3 which is two orders of magnitude smaller than the upper limits placed
on this parameter by [38].
When plotting Q − 1 is a function of a, we include a plot of Q − 1 for a DGP model with an expansion history
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FIG. 8: We plot Q−1 as evaluated from Eq. (15) for various dark energy models where we allow for dark energy perturbations
and model dark energy anisotropic stress as Model I. The legend lists the various models used and is ordered according to their
values on large scales today. LEFT: Here we plot Q− 1 as a function of scale factor a for the scale corresponding to 40 times
that of the horizon as explained in subsection (IV.A.2). We also include a plot of Q − 1 for a DGP model with Ωm = 0.251
and an expansion history identical to that of ΛCDM, as given by Eq. (24). This model deviates much more significantly than
do any of the dark energy models with perturbations. RIGHT: We plot Q − 1 as a function of wave-number k today. Also
included is a plot of Q− 1 for a f(R) model as described by Eq (23). Not only is the deviation that manifests for f(R) more
significant than the deviations for dark energy models with perturbations, but f(R) also shows deviations for a different range
of k values.
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FIG. 9: We plot Q− 1 as evaluated from Eq. (15) for various dark energy models where we allow for dark energy density and
anisotropic stress perturbations as in Model II. The legend lists the various models used and is ordered according to their values
today. LEFT: Here we plot Q− 1 as a function of scale factor a for the scale corresponding to 40 times that of the horizon as
explained in subsection (IV.A.2). We also include a plot of Q− 1 for a DGP model with Ωm = 0.251 and an expansion history
identical to that of ΛCDM, as given by Eq. (24). This model deviates much more significantly than do any of the dark energy
models with perturbations. RIGHT: We plot Q− 1 as a function of wave-number k today. Also included is a plot of Q− 1 for
a f(R) model as described by Eq (23). Not only is the deviation that manifests for f(R) more significant than the deviations
for dark energy models with perturbations, but f(R) also shows deviations for a different range of k values.

from unity in Q for these dark energy models occur at a distinct scale range compared to those for the f(R) modified
gravity model.

3. Impact on the MG parameter R

Now we can discuss the effect of the dark energy models with anisotropic stress perturbations on the MG parameter
R. We first explore the effect of the model I R. This is done by using Eq. 18.
Our results for model I are shown in Fig.11. For comparison, in the plot of R− 1 as a function of k we also plot the

R−1 for a f(R) model using the of the parameterization of [38], which is an improved version of what was introduced
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dark energy perturbations in Eq. (7.3) we have:

−Q 4πGa2
∑

i ̸=DE

ρi∆i = −4πGa2
∑

i ̸=DE

ρi∆i − 4πGa2ρDE∆DE (7.17)

⇒ Q = 1 +
ρDE∆DE∑
i ̸=DE

ρi∆i
(7.18)

Obtaining an expression for R is a little more cumbersome. We must first evaluate an

expressions for ψ by combining Eqn. (7.3) with Eqn. (7.4) and Eqn. (7.5) with Eqn. (7.6)

these give:

k2ψ = −
∑

i ̸=DE

ρ̃i
[
wiΠi +

∆i

2

]
− ρ̃DE

[
wDEΠDE +

∆DE

2

]
, (7.19)

k2ψ = −Q
∑

i ̸=DE

ρ̃i
[
wiΠi +R

∆i

2

]
, (7.20)

where ρ̃α = 8πGa2ρα. Now equating the RHS of these equations, subbing in for Q using

Eqn.(7.18), and solving for R gives

R =

3
[
ρDEwDEΠDE − ρDE∆DE∑

i ̸=DE
ρi∆i

∑
i ̸=DE

ρiwiΠi

]

∑
i ̸=DE

ρi∆i + ρDE∆DE
+ 1. (7.21)

This equation shows that at late times, assuming ordinary matter has negligible anisotropic

stress, the only way we could see an effect on R is if dark energy has some type of anisotropic

stress.

Taking Eqns. (7.18) and (7.21) together, we can see that indeed neglecting a dark energy

model that has perturbations and anisotropic stress could in fact influence our constraints

on the MG parameters Q and R. Next we will explore the magnitude of these effects.

Effect of dark energy density perturbations on the MG parameter Q

Exploring how dark energy perturbations affect Q is quite simple. To do this we simply

allow our modified version of CAMB to evolve dark energy perturbations for a range of values

Again, we combining the modified and unmodified growth equations 

4

where c2vis is the viscosity parameter. As discussed in [63], in order to produce stable solutions, c2vis must have the
same sign as (1 + w).
Next we must consider the effect that the anisotropic stress perturbations in the dark energy will have on the

evolution of the other dark energy perturbation variables. In [60] it is shown that δ is only indirectly affected, while
the evolution of θ is directly modified and given by

θ̇ = (3c2s − 1)Hθ + k2
c2sδ

1 + w
+ k2

(
ψ − 2

3

w

1 + w
Π

)
. (13)

III. RELATIONS BETWEEN DARK ENERGY PERTURBATIONS AND THE MG PARAMETERS

We will now explore how the effects dark energy perturbations can mimic any possible departures of MG parameters
introduced in Eqs. (4) and (5) from their value of unity in ΛCDM. While the relationship between the dark energy
perturbations and the growth index, γ, is hard to explore analytically, with the MG parameters we can actually derive
analytic expressions in terms of already defined variables.
Before deriving these expressions, let us first discuss how tests with these parameters are performed. When per-

forming tests using MG parameters the usual approach is to make the assumption that we are in the presence of
a ΛCDM model and look for deviations from that model using MG parameters such as those in Eqs. (4) and (5).
Given that we are assuming a ΛCDM background, when we look at these equations, none of the quantities on the
right-hand side (RHS) of Eqs. (4) and (5) are dark energy quantities since dark energy does not have perturbations
or anisotropic stress perturbations in ΛCDM.
Now to see how dark energy perturbations affect the MG parameters, let us now consider a case where the true

underlying background model does allow for dark energy to have perturbations and shear. In this case, the underlying
model has potentials governed by Eqs. (2) and (3), where the quantities on the RHS do include dark energy quantities.
We will denote these dark energy quantities with a subscript DE below. We can calculate how the effects of these dark
energy perturbations can mimic the presence of the parameters Q and R by noticing that when performing these tests
the metric potentials from the modified growth equations must match the metric potentials of the true underlying
model.
Since the left-hand sides of Eqs. (2) and (4) are the same, we can simply set the right-hand sides of these equations

equal to one another and solve for Q. Separating out the dark energy perturbations in Eq. (2), we have (as previously
obtained in [65]):

−Q 4πGa2
∑

i ̸=DE

ρi∆i = −4πGa2
∑

i ̸=DE

ρi∆i − 4πGa2ρDE∆DE (14)

⇒ Q = 1 +
ρDE∆DE∑
i ̸=DE

ρi∆i
. (15)

Obtaining an expression for R is a little more cumbersome as we must first evaluate an expressions for ψ. By
combining Eq. (2) with Eq. (3) and Eq. (4) with Eq. (5) we obtain:

k2ψ = −
∑

i ̸=DE

ρ̃i
[
wiΠi +

∆i

2

]
− ρ̃DE

[
wDEΠDE +

∆DE

2

]
, (16)

k2ψ = −Q
∑

i ̸=DE

ρ̃i
[
wiΠi +R

∆i

2

]
, (17)

where ρ̃α = 8πGa2ρα. Now equating the RHS of these equations, subbing in for Q using Eq. (15), and solving for R
gives

R = 1 + 2

ρDEwDEΠDE − ρ
DE

∆DE∑
i ̸=DE

ρi∆i

∑
i ̸=DE

ρiwiΠi

∑
i̸=DE

ρi∆i + ρDE∆DE
. (18)

This equation shows that, at late times with the assumption that ordinary matter has negligible anisotropic stress,
the only way we could see an effect on R is if dark energy has some type of anisotropic stress.
Taking Eqs. (15) and (18) together, we can see that neglecting a dark energy model with perturbations and

anisotropic stress could, in fact, influence our constraints on the MG parameters Q and R. We will explore the
magnitude of these effects.

RDGP =
1 + 2⌦m(a)2

2 + ⌦m(a)2

13

0.0 0.2 0.4 0.6 0.8 1.0
!0.05

0.00

0.05

0.10

0.15

0.20

0.25

!

Q
!
1

!w0,wa"
DGP

!!0.65,0"

!!0.8,0.3"

!!0.9,0"

!!0.95,0.1"

!!1.1,0"

!!1.1,!0.4"

!!1.3,0.2"

!!1.35,0" 10!4 0.001 0.01 0.1

!0.3

!0.2

!0.1

0.0

0.1

!

Q
!
1

!w0,wa"
!!0.65,0"

!!0.8,0.3"

!!0.9,0"

F!R"

!!0.95,0.1"

!!1.1,0"

!!1.1,!0.4"

!!1.3,0.2"

!!1.35,0"

FIG. 10: We plot Q−1 as evaluated from Eq. (15) for various dark energy models where we allow for dark energy perturbations
and model dark energy anisotropic stress as Model III. The legend lists the various models used and is ordered according to
their values today. LEFT: Here we plot Q − 1 as a function of scale factor a for the scale corresponding to 40 times that of
the horizon as explained in subsection (IV.A.2). We also include a plot of Q − 1 for a DGP model with Ωm = 0.251 and an
expansion history identical to that of ΛCDM, as given by Eq. (24). This model deviates much more significantly than do any
of the dark energy models with perturbations. RIGHT: We plot Q− 1 as a function of wave-number k today. Also included is
a plot of Q − 1 for a f(R) model as described by Eq (23). Not only is the deviation that manifests for f(R) more significant
than the deviations for dark energy models with perturbations, but f(R) also shows deviations for a different range of k values.

by [26]. In this parameterization, R is written as

Rf(R) =
1 + 4

3λ
2
1k

2a4

1 + 2
3λ

2
1k

2a4
, (29)

where as described previously, λ1 is just the Compton wavelength today and can be written as λ21 = B0c2/(2H2
0 ).

Again, we plot an f(R) model with B0 = 10−3 which is two orders of magnitude smaller than the upper limits placed
on this parameter by [38].
When plotting R − 1 is a function of a, we include a plot of R − 1 for a DGP model with an expansion history

matching that of ΛCDM with Ωm = 0.251. For a DGP model, RDGP , can be written as,[27]

RDGP =
1 + 2Ωm(a)2

2 + Ωm(a)2
. (30)

As one can see the deviations in the value of R from unity for these dark energy models is not as significant as
the DGP model or the f(R) model. Similar to what was seen for the MG parameter Q, the f(R) models exhibit
deviations of R from one that occur at completely different scales compared to the dark energy models. We can
therefore conclude that dark energy models with anisotropic stress perturbations described by model I would be
distinguishable from such modified gravity models.
In Fig. 12, we plot R − 1 for Models II and III. The behavior of R for these models has of course already been

given by Eq. (25). For comparison, we also include a plot of RDGP , which is given by Eq. (30) and Rf(R) as given
by Eq. (29). Once again the behavior of R for these two models do not deviate from 1 as significantly as the DGP
model or the f(R) model. Also for the f(R) models the deviations in R at mostly different scales compared to the
dark energy models. Thus these dark energy models would be distinguishable from such modified gravity models.

C. Effects of changing the sound speed of dark energy perturbations

In our final analysis section of the paper we would like to quickly explore the effect of the effective sound speed
of dark energy perturbations, c2s, on the various tests we have discussed. For brevity we only look at the two most
extreme cases of the dark energy equations of state we have considered those with w = −0.65 and w = −1.35. We
consider a range of sound speeds, c2s = 1, c2s = 0.1, c2s = 0.01, and c2s = 0.

For DGP Models For f(R) Models 
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FIG. 11: We plot R−1 as evaluated from Eq. (18) for various dark energy models where we allow for dark energy perturbations
and model dark energy anisotropic stress as Model I. The legend lists the various models used and is ordered according to
their values today. LEFT: Here we plot R − 1 as a function of scale factor a for the scale corresponding to 40 times that of
the horizon as explained in subsection (IV.A.2). We also include a plot of R − 1 for a DGP model with Ωm = 0.251 and an
expansion history identical to that of ΛCDM, as given by Eq. (30). This model deviates much more significantly than do any
of the dark energy models with perturbations. RIGHT: We plot R− 1 as a function of wave-number k today. Also included is
a plot of R − 1 for a f(R) model as described by Eq (29). Not only is the deviation that manifests for f(R) more significant
than the deviations for dark energy models with perturbations, but f(R) also shows deviations for a different range of k values.
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FIG. 12: We plot the evolution of R−1 for Models II and III where the behavior of R is given by Eq. (25). LEFT: We plot R−1
for large scales as a function of scale factor a. For comparison, also included in these plots is RDGP = (1+2Ωm(a)2)/(2+Ωm(a)2)
for a DGP model with Ωm = 0.251 and an expansion history identical to that of ΛCDM. One can see that DGP model deviates
much more significantly than the two models plotted, thus dark energy models with anisotropic stress perturbations that could
produce an MG parameter R of the given amplitude would still be distinguishable from modified gravity models such as the
DGP model. RIGHT: We plot R−1 as a function of wave-number k today. Also included is a plot of R−1 for a f(R) model as
described by Eq. (29). Not only is the deviation that manifests for f(R) more significant than the deviations for dark energy
models with perturbations, but f(R) also shows deviations mostly in a different range of k values.

1. Impact on the growth index

As we have done previously we will first explore the impact of the various values of c2s on the value of the growth index
parameter. We do not plot the behavior of the growth index parameters for dark energy models with anisotropic stress
perturbations for the various c2s considered because the changed sound speed was found to have no effect compared
to the values obtained in the previous section. However, for dark energy models that have no anisotropic stress
perturbations the values of γ were affected. We plot these results in Fig.13. As one can see, for most of the values
of c2s, the values of the growth index parameters are clustered very close to the c2s = 1 case. The only exception is
c2s = 0. In this case the values of both γ and γb are shifted towards higher values for w < −1 and towards lower values
for w > −1.
Once again, though, the values of γ exhibited for all models are not very far deviated from the theoretical value of

6/11 and is certainly not near the values exhibited by the various modified gravity models we have discussed previously
in this paper. This leads us to a major conclusion: the constant growth index γ is a very robust way to distinguish
between dark energy models – even extreme dark energy models – and modified gravity models.
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FIG. 2: We plot the best fit values for the growth index parameters as a function of w evaluated at z = 1. Because of this, it
is possible for two models to fall at the on the same line vertically in our graphs, as some indeed do. TOP: We fit a constant γ
to our obtained logarithmic growth rate f via the usual ansatz f(z) = Ωm(z)γ . Interestingly, these best fit values as a function
of the dark energy equation of state, w, follow a linear trend. We plot the best fit trend as a function of w, for which we find
γ = 0.552 + 0.028(1 + w(z = 1)). BOTTOM LEFT: We plot the best fits for the parameter γe from the parameterization for
γ given by Eq. (22). BOTTOM RIGHT: We plot the best fits for the parameter γb from the parameterization for γ given by
Eq. (22). Notice all of the values remain positive even when DE perturbations have been introduced. This is consistent with
previous results in absence of DE perturbations that showed this parameter takes positive values for dark energy models but
can be negative for modified gravity models [15, 22, 30].

We evaluate f at k = 0.02, which is the k at which the amplitude of primordial curvature perturbations, R, was
normalized in [73] (in [74] R was normalized at k = 0.027). We checked and found that the value of f does not change
significantly for larger values of k. In Fig. 1, we plot the logarithmic growth rate as a function of redshift, z = 1/a−1,
which we obtain from this interpolation method.
We fit two parameterizations of γ to the ansatz f(z) = Ωm(z)γ . First, we fit the standard γ = constant and then

we fit a redshift dependent parameterization. Redshift dependent parameterizations of γ such as those introduced by
[15, 22] have been shown to more accurately reproduce the true behavior of f than the constant form. One example
of these parameterization reads

γ(z) = γ0 + γ′z, (20)

where γ0 is the value of the growth index today, and γ′ ≡ dγ
dz (z = 0).

Here we choose to use the parameterization first introduced in [30]. This exponential parameterization is written
as

γ(z) = γe + γb e
−z/0.61, (21)

and provides similar results to the parameterization (20) above, but it picks out more accurately the high redshift
values of the growth index parameter, γe, while still having a slope parameter, γb, that can be used to distinguish
between different models of gravity.
Our results for these fits can be found in Fig. 2. Notice that, for a constant gamma, the best fit values follow a

mostly linear trend with respect to the dark energy equation of state, w, evaluated at a redshift, z = 1. We fit this
trend and found the following relation

γ = 0.552 + 0.028(1 + w(z = 1)). (22)

•  Anisotropic stress of the form described earlier does not alter the 
results above. 



SUMMARY 

¢ We derived relations between the MG 
parameters and dark energy perturbations. 

¢ Though the MG parameters show some deviation 
for DE models with perturbations, this is not 
nearly as significant as those given by modified 
gravity models. 

¢ The growth index is most robust to dark energy 
perturbations 

¢ Our tests should be able to distinguish between 
dark energy and modified gravity models. 

¢ Full work available as arXiv:1311.0726 


